234
Views
1
CrossRef citations to date
0
Altmetric
Pharmaceutical Analysis

Determination of Quinic Acids in Helichrysum arenarium (L.) Moench by Ultrafiltration Affinity and Ultra-High-Performance Liquid Chromatography Coupled with Quadrupole-Time-of-Flight Mass Spectrometry (UF-UPLC-Q-TOF-MS)

, , , , , , , & show all
Pages 772-789 | Received 05 Apr 2020, Accepted 09 Jun 2020, Published online: 23 Dec 2020

References

  • Arora, M., S. Barquera, N. J. Farpour Lambert, T. Hassell, S. B. Heymsfield, B. Oldfield, D. Ryan, X. R. Salas, W. Scinta, and M. Vicari. 2019. Stigma and obesity: The crux of the matter. The Lancet. Public Health 4 (11):e549–50. doi:10.1016/S2468-2667(19)30186-0.
  • Blüher, M. 2019. Obesity: Global epidemiology and pathogenesis. Nature Reviews Endocrinology 15 (5):288–98. doi:10.1038/s41574-019-0176-8.
  • Cardel, M. I., A. M. Jastreboff, and A. S. Kelly. 2019. Treatment of Adolescent Obesity in 2020. JAMA 322 (17):1707–8. doi:10.1001/jama.2019.14725.
  • Chen, G., B. Huang, and M. Guo. 2018. Current advances in screening for bioactive components from medicinal plants by affinity ultrafiltration mass spectrometry. Phytochemical Analysis 29 (4):375–86. doi:10.1002/pca.2769.
  • Chooi, Y. C., C. Ding, and F. Magkos. 2019. The epidemiology of obesity. Metabolism: Clinical and Experimental 92:6–10. doi:10.1016/j.metabol.2018.09.005.
  • Eshbakova, K. A., and H. A. Aisa. 2009. Components of Helichrysum arenarium. Chemistry of Natural Compounds 45 (6):929–30. doi:10.1007/s10600-010-9462-3.
  • Fu, C., Y. Jiang, J. Guo, and Z. Su. 2016. Natural products with anti-obesity effects and different mechanisms of action. Journal of Agricultural and Food Chemistry 64 (51):9571–85. doi:10.1021/acs.jafc.6b04468.
  • Gupta, M., R. Sharma, and A. Kumar. 2018. Docking techniques in pharmacology: How much promising? Computational Biology and Chemistry 76:210–7. doi:10.1016/j.compbiolchem.2018.06.005.
  • Ha, J. H., and S. N. Park. 2018. Mechanism underlying inhibitory effect of six dicaffeoylquinic acid isomers on melanogenesis and the computational molecular modeling studies. Bioorganic & Medicinal Chemistry 26 (14):4201–8. doi:10.1016/j.bmc.2018.07.014.
  • Hermoso, J., D. Pignol, B. Kerfelec, I. Crenon, C. Chapus, and J. C. Fontecilla-Camps. 1996. Lipase activation by nonionic detergents. The crystal structure of the porcine lipase-colipase-tetraethylene glycol monooctyl ether complex. The Journal of Biological Chemistry 271 (30):18007–16. doi:10.1074/jbc.271.30.18007.
  • Hu, B., F. Cui, F. Yin, X. Zeng, Y. Sun, and Y. Li. 2015. Caffeoylquinic acids competitively inhibit pancreatic lipase through binding to the catalytic triad. International Journal of Biological Macromolecules 80:529–35. doi:10.1016/j.ijbiomac.2015.07.031.
  • Huai, J., X. Zhao, S. Wang, L. Xie, Y. Li, T. Zhang, C. Cheng, and R. Dai. 2019. Characterization and screening of cyclooxygenase-2 inhibitors from Zi-shen pill by affinity ultrafiltration-ultra performance liquid chromatography mass spectrometry. Journal of Ethnopharmacology 241:111900. doi:10.1016/j.jep.2019.111900.
  • Jawed, A., G. Singh, S. Kohli, A. Sumera, S. Haque, R. Prasad, and D. Paul. 2019. Therapeutic role of lipases and lipase inhibitors derived from natural resources for remedies against metabolic disorders and lifestyle diseases. South African Journal of Botany 120:25–32. doi:10.1016/j.sajb.2018.04.004.
  • Li, L., J. Kong, C. H. Yao, X. F. Liu, and J. H. Liu. 2019. Rapid identification of urokinase plasminogen activator inhibitors from Traditional Chinese Medicines based on ultrafiltration, LC-MS and in silico docking. Journal of Pharmaceutical and Biomedical Analysis 164:241–8. doi:10.1016/j.jpba.2018.10.036.
  • Mhatre, S. V., A. A. Bhagit, and R. P. Yadav. 2016. Pancreatic lipase inhibitor from food plant: Potential molecule for development of safe anti-obesity drug. MGM Journal of Medical Sciences 3 (1):34–41. doi:10.5005/jp-journals-10036-1084.
  • Mo, D., G. Zeng, X. Yuan, M. Chen, L. Hu, H. Li, H. Wang, P. Xu, C. Lai, J. Wan, et al. 2018. Molecular docking simulation on the interactions of laccase from Trametes versicolor with nonylphenol and octylphenol isomers. Bioprocess and Biosystems Engineering 41 (3):331–43. doi:10.1007/s00449-017-1866-z.
  • Morikawa, T., K. Ninomiya, J. Akaki, N. Kakihara, H. Kuramoto, Y. Matsumoto, T. Hayakawa, O. Muraoka, L.-B. Wang, L.-J. Wu, et al. 2015. Dipeptidyl peptidase-IV inhibitory activity of dimeric dihydrochalcone glycosides from flowers of Helichrysum arenarium. Journal of Natural Medicines 69 (4):494–506. doi:10.1007/s11418-015-0914-8.
  • Pljevljakušić, D., D. Bigović, T. Janković, S. Jelačić, and K. Šavikin. 2018. Sandy Everlasting (Helichrysum arenarium (L.) Moench): Botanical, Chemical and Biological Properties. Frontiers in Plant Science 9:1123. doi:10.3389/fpls.2018.01123.
  • Qin, S., Y. Ren, X. Fu, J. Shen, X. Chen, Q. Wang, X. Bi, W. Liu, L. Li, G. Liang, et al. 2015. Multiple ligand detection and affinity measurement by ultrafiltration and mass spectrometry analysis applied to fragment mixture screening. Analytica Chimica Acta 886:98–106. doi:10.1016/j.aca.2015.06.017.
  • Sezik, M., M. Aslan, D. D. Orhan, E. Erdemoglu, M. Pekcan, T. Mungan, and E. Sezik. 2010. Improved metabolic control and hepatic oxidative biomarkers with the periconception use of Helichrysum plicatum Ssp. Plicatum. Journal of Obstetrics and Gynaecology 30 (2):127–31. doi:10.3109/01443610903474348.
  • Shikov, A. N., O. N. Pozharitskaya, V. G. Makarov, H. Wagner, R. Verpoorte, and M. Heinrich. 2014. Medicinal plants of the Russian Pharmacopoeia; their history and applications. Journal of Ethnopharmacology 154 (3):481–536. doi:10.1016/j.jep.2014.04.007.
  • Slanc, P., B. Doljak, S. Kreft, M. Lunder, D. Janes, and B. Strukelj. 2009. Screening of selected food and medicinal plant extracts for pancreatic lipase inhibition. Phytotherapy Research 23 (6):874–7. doi:10.1002/ptr.2718.
  • Song, H. P., J. Chen, J. Y. Hong, H. Hao, L. W. Qi, J. Lu, Y. Fu, B. Wu, H. Yang, and P. Li. 2015. A strategy for screening of high-quality enzyme inhibitors from herbal medicines based on ultrafiltration LC-MS and in silico molecular docking. Chemical Communications (Cambridge, England) 51 (8):1494–7. doi:10.1039/C4CC08728C.
  • Srivastava, G., and C. Apovian. 2018b. Future Pharmacotherapy for Obesity: New Anti-obesity Drugs on the Horizon. Current Obesity Reports 7 (2):147–61. doi:10.1007/s13679-018-0300-4.
  • Srivastava, G., and C. M. Apovian. 2018b. Current pharmacotherapy for obesity. Nature Reviews Endocrinology 14 (1):12–24. doi:10.1038/nrendo.2017.122.
  • Tao, Y., H. Cai, W. D. Li, and B. C. Cai. 2015. Ultrafiltration coupled with high-performance liquid chromatography and quadrupole-time-of-flight mass spectrometry for screening lipase binders from different extracts of Dendrobium officinale. Analytical and Bioanalytical Chemistry 407 (20):6081–93. doi:10.1007/s00216-015-8781-4.
  • Wang, L., J. W. Wang, C. Wang, S. C. Sun, B. Xu, and L. J. Wu. 2012. Chemical constituents in the lipid-lowering fraction of flos Helichrysum arenarium (III). Chinese Journal of Medicinal Chemistry 3:1–3.
  • Wang, L., Y. Liu, Y. Luo, K. Huang, and Z. Wu. 2018. Quickly screening for potential α-glucosidase inhibitors from guava leaves tea by bioaffinity ultrafiltration coupled with HPLC-ESI-TOF/MS method. Journal of Agricultural and Food Chemistry 66 (6):1576–82. doi:10.1021/acs.jafc.7b05280.
  • Wei, H., X. Zhang, X. Tian, and G. Wu. 2016. Pharmaceutical applications of affinity-ultrafiltration mass spectrometry: Recent advances and future prospects. Journal of Pharmaceutical and Biomedical Analysis 131:444–53. doi:10.1016/j.jpba.2016.09.021.
  • Zhang, C., Y. Ma, F. Gao, Y. Zhao, S. Cai, and M. Pang. 2018. The free, esterified, and insoluble-bound phenolic profiles of Rhus chinensis Mill. fruits and their pancreatic lipase inhibitory activities with molecular docking analysis. Journal of Functional Foods 40:729–35. doi:10.1016/j.jff.2017.12.019.
  • Zhang, J. Y., Q. Zhang, N. Li, Z. J. Wang, J. Q. Lu, and Y. J. Qiao. 2013. Diagnostic fragment-ion-based and extension strategy coupled to DFIs intensity analysis for identification of chlorogenic acids isomers in Flos Lonicerae Japonicae by HPLC-ESI-MS(n). Talanta 104 (2):1–9. doi:10.1016/j.talanta.2012.11.012.
  • Zhou, J., H. Cai, S. Tu, Y. Duan, K. Pei, Y. Xu, J. Liu, M. Niu, Y. Zhang, L. Shen, et al. 2018. Identification and analysis of compound profiles of sinisan based on ‘individual herb, herb-pair, herbal formula’ before and after processing using UHPLC-Q-TOF/MS coupled with multiple statistical strategy. Molecules 23 (12):3128. doi:10.3390/molecules23123128.
  • Zhou, W., J. J. Shan, and M. X. Meng. 2018. A two-step ultra-high-performance liquid chromatography-quadrupole/time of flight mass spectrometry with mass defect filtering method for rapid identification of analogues from known components of different chemical structure types in Fructus Gardeniae-Fructus Forsythiae herb pair extract and in rat's blood. Journal of Chromatography A 1563:99–123. doi:10.1016/j.chroma.2018.05.067.
  • Zulfiker, A., M. Sohrabi, J. Qi, B. Matthews, M. Wei, and I. Grice. 2016. Multi-constituent identification in Australian cane toad skin extracts using high-performance liquid chromatography high-resolution tandem mass spectrometry. Journal of Pharmaceutical and Biomedical Analysis 129:260–72. doi:10.1016/j.jpba.2016.06.031.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.