242
Views
2
CrossRef citations to date
0
Altmetric
Liquid Chromatography

Determination of Ionic and Nonionic Perfluoroalkyl Substances (PFASs) in the Surface Water of the Qiantang River, China by Solid-Phase Extraction (SPE) and Ultra-High Performance Liquid Chromatography-Tandem Mass Spectrometry (UHPLC-MS/MS)

, , , &
Pages 802-816 | Received 09 Apr 2020, Accepted 12 Jun 2020, Published online: 02 Jul 2020

References

  • Bao, J., W. J. Yu, Y. Liu, X. Wang, Y. H. Jin, and G. H. Dong. 2019. Perfluoroalkyl substances in groundwater and home-produced vegetables and eggs around a fluorochemical industrial park in China. Ecotoxicology and Environmental Safety 171 (1):199–205. doi:10.1016/j.ecoenv.2018.12.086.
  • Cordner, A., V. Y. De la Rosa, L. A. Schaider, R. A. Rudel, L. Richter, and P. Brown. 2019. Guideline levels for PFOA and PFOS in drinking water: The role of scientific uncertainty, risk assessment decisions, and social factors. Journal of Exposure Science & Environmental Epidemiology 29 (2):157–71. doi:10.1038/s41370-019-0134-5.
  • Crane, J. L. 2019. Distribution, toxic potential, and influence of land use on conventional and emerging contaminants in Urban stormwater pond sediments. Archives of Environmental Contamination and Toxicology 76 (2):265–94. doi:10.1007/s00244-019-00598-w.
  • Dong, H. K., G. H. Lu, Z. H. Yan, J. C. Liu, and Y. Ji. 2019. Molecular and phenotypic responses of male crucian carp (Carassius auratus) exposed to perfluorooctanoic acid. The Science of the Total Environment 653 (1):1395–406. doi:10.1016/j.scitotenv.2018.11.017.
  • Fan, X. Q., J. Gao, W. C. Li, J. Huang, and G. Yu. 2020. Determination of 27 pharmaceuticals and personal care products (PPCPs) in water: The benefit of isotope dilution. Frontiers of Environmental Science & Engineering 14 (1):8. doi:10.1007/s11783-019-1187-3.
  • Fan, X. Q., S. M. Zhao, and J. Y. Hu. 2019. Dissipation behavior and dietary risk assessment of lambda-cyhalothrin, thiamethoxam and its metabolite clothianidin in apple after open field application. Regulatory Toxicology and Pharmacology. 101 (1):135–41. doi:10.1016/j.yrtph.2018.11.003.
  • Fraser, M. A., L. Chen, M. Ashar, W. Huang, J. N. Zeng, C. F. Zhang, and D. D. Zhang. 2020. Occurrence and distribution of microplastics and polychlorinated biphenyls in sediments from the Qiantang River and Hangzhou Bay, China. Ecotoxicology and Environmental Safety 196 :110536. doi:10.1016/j.ecoenv.2020.110536
  • Gao, Y., X. M. Li, X. Q. Li, Q. H. Zhang, and H. M. Li. 2018. Simultaneous determination of 21 trace perfluoroalkyl substances in fish by isotope dilution ultrahigh performance liquid chromatography tandem mass spectrometry. Journal of Chromatography. B: Analytical Technologies in the Biomedical and Life Sciences 1084:45–52. doi:10.1016/j.jchromb.2018.03.008.
  • Groffen, T., R. Lasters, F. Lemiere, T. Willems, M. Eens, L. Bervoets, and E. Prinsen. 2019. Development and validation of an extraction method for the analysis of perfluoroalkyl substances (PFASs) in environmental and biotic matrices. Journal of Chromatography. B: Analytical Technologies in the Biomedical and Life Sciences 1116 (1):30–7. doi:10.1016/j.jchromb.2019.03.034.
  • Guardian, M. G. E., E. G. Boongaling, V. R. R. Bernardo-Boongaling, J. Gamonchuang, T. Boontongto, R. Burakham, P. Arnnok, and D. S. Aga. 2020. Prevalence of per- and polyfluoroalkyl substances (PFASs) in drinking and source water from two Asian countries. Chemosphere 256 (1):127115. doi:10.1016/j.chemosphere.2020.127115.
  • Hurley, S., D. Goldberg, M. M. Wang, J. S. Park, M. Petreas, L. Bernstein, H. Anton-Culver, D. O. Nelson, and P. Reynolds. 2018. Time trends in per- and polyfluoroalkyl substances (PFASs) in California women: Declining serum levels, 2011–2015. Environmental Science & Technology 52 (1):277–87. doi:10.1021/acs.est.7b04650.
  • International Agency for Research on Cancer (IARC). 2016. Monographs on the evaluation of carcinogenic risks to humans, vol. 110. Perfluorooctanoic acid, tetrafluoroethylene, dichloromethane, 1,2-dichloropropane, and 1,3-propane sultone. Available at: http://monographs.iarc.fr/ENG/Monographs/vol110/mono110-07.pdf
  • Janda, J., K. Nodler, H. J. Brauch, C. Zwiener, and F. T. Lange. 2019. Robust trace analysis of polar (C2-C8) perfluorinated carboxylic acids by liquid chromatography-tandem mass spectrometry: Method development and application to surface water, groundwater and drinking water. Environmental Science and Pollution Research International 26 (8):7326–36. doi:10.1007/s11356-018-1731-x.
  • Kadar, H., B. Veyrand, J. P. Antignac, S. Durand, F. Monteau, and B. L. Bizec. 2011. Comparative study of low- versus high-resolution liquid chromatography-mass spectrometric strategies for measuring perfluorinated contaminants in fish. Food Additives & Contaminants. Part A: Chemistry, Analysis, Control, Exposure & Risk Assessment 28 (9):1261–73. doi:10.1080/19440049.2011.583283.
  • Kotthoff, M., J. Muller, H. Jurling, M. Schlummer, and D. Fiedler. 2015. Perfluoroalkyl and polyfluoroalkyl substances in consumer products. Environmental Science and Pollution Research International 22 (19):14546–59. doi:10.1007/s11356-015-4202-7.
  • Lacina, O., P. Hradkova, J. Pulkrabova, and J. Hajslova. 2011. Simple, high throughput ultra-high performance liquid chromatography/tandem mass spectrometry trace analysis of perfluorinated alkylated substances in food of animal origin: Milk and fish. Journal of Chromatography. A 1218 (28):4312–21. doi:10.1016/j.chroma.2011.04.061.
  • Liu, S. Y., H. L. He, X. H. Huang, Q. Jin, and G. N. Zhu. 2015. Comparison of extraction solvents and sorbents in the quick, easy, cheap, effective, rugged, and safe method for the determination of pesticide multiresidue in fruits by ultra high performance liquid chromatography with tandem mass spectrometry. Journal of Separation Science 38 (20):3525–32. doi:10.1002/jssc.201500625.
  • Liu, Y., W. J. Liu, Y. S. Xu, Y. Z. Zhao, P. Wang, S. Y. Yu, J. D. Zhang, Y. Tang, G. N. Xiong, S. Tao, et al. 2019. Characteristics and human inhalation exposure of ionic per- and polyfluoroalkyl substances (PFASs) in PM10 of cities around the Bohai Sea: Diurnal variation and effects of heating activity. Science of the Total Environment. 687 (1):177–87. doi:10.1016/j.scitotenv.2019.06.103.
  • Lu, G. H., N. Gai, P. Zhang, H. T. Piao, S. Chen, X. C. Wang, X. C. Jiao, X. C. Yin, K. Y. Tan, and Y. L. Yang. 2017. Perfluoroalkyl acids in surface waters and tapwater in the Qiantang River watershed-Influences from paper, textile, and leather industries. Chemosphere 185 (1):610–7. doi:10.1016/j.chemosphere.2017.06.139.
  • Mancini, F. R., G. Cano-Sancho, J. Gambaretti, P. Marchand, M. C. Boutron-Ruault, G. Severi, P. Arveux, J. P. Antignac, and M. Kvaskoff. 2020. Perfluorinated alkylated substances serum concentration and breast cancer risk: Evidence from a nested case-control study in the French E3N cohort. International Journal of Cancer 146 (4):917–28. doi:10.1002/ijc.32357.
  • Mazzoni, M., A. Buffo, F. Cappelli, S. Pascariello, S. Polesello, S. Valsecchi, P. Volta, and R. Bettinetti. 2019. Perfluoroalkyl acids in fish of Italian deep lakes: Environmental and human risk assessment. The Science of the Total Environment 653 (1):351–8. doi:10.1016/j.scitotenv.2018.10.274.
  • Meng, J., S. F. Liu, Y. Q. Zhou, and T. Y. Wang. 2019. Are perfluoroalkyl substances in water and fish from drinking water source the major pathways towards human health risk? Ecotoxicology and Environmental Safety 181 (1):194–201. doi:10.1016/j.ecoenv.2019.06.010.
  • Mulabagal, V., L. Liu, J. Y. Qi, C. Wilson, and J. S. Hayworth. 2018. A rapid UHPLC-MS/MS method for simultaneous quantitation of 23 perfluoroalkyl substances (PFAS) in estuarine water. Talanta 190 (1):95–102. doi:10.1016/j.talanta.2018.07.053.
  • Niessen, W. M. A., P. Manini, and R. Andreoli. 2006. Matrix effects in quantitative pesticide analysis using liquid chromatography-mass spectrometry. Mass Spectrometry Reviews 25 (6):881–99. doi:10.1002/mas.20097.
  • Pramanik, B. K. 2015. Occurrence of perfluoroalkyl and polyfluoroalkyl substances in the water environment and their removal in a water treatment process. Journal of Water Reuse and Desalination 5 (2):196–210. doi:10.2166/wrd.2014.068.
  • Schuetze, A., T. Heberer, S. Effkemann, and S. Juergensen. 2010. Occurrence and assessment of perfluorinated chemicals in wild fish from Northern Germany. Chemosphere 78 (6):647–52. doi:10.1016/j.chemosphere.2009.12.015.
  • Skaar, J. S., E. M. Raeder, J. L. Lyche, L. Ahrens, and R. Kallenborn. 2019. Elucidation of contamination sources for poly- and perfluoroalkyl substances (PFASs) on Svalbard (Norwegian Arctic). Environmental Science and Pollution Research International 26 (8):7356–63. doi:10.1007/s11356-018-2162-4.
  • Sorli, J. B., M. Lag, L. Ekeren, J. Perez-Gil, L. S. Haug, E. Da Silva, M. N. Matrod, K. B. Gutzkow, and B. Lindeman. 2020. Per- and polyfluoroalkyl substances (PFASs) modify lung surfactant function and pro-inflammatory responses in human bronchial epithelial cells. Toxicology In Vitro. 62 :104656. doi:10.1016/j.tiv.2019.104656.
  • Sunderland, E. M., X. D. C. Hu, C. Dassuncao, A. K. Tokranov, C. C. Wagner, and J. G. Allen. 2019. A review of the pathways of human exposure to poly- and perfluoroalkyl substances (PFASs) and present understanding of health effects. Journal of Exposure Science & Environmental Epidemiology 29 (2):131–47. doi:10.1038/s41370-018-0094-1.
  • Tan, K. Y., G. H. Lu, H. T. Piao, S. Chen, X. C. Jiao, N. Gai, E. Yamazaki, N. Yamashita, J. Pan, and Y. L. Yang. 2017. Current contamination status of perfluoroalkyl substances in tapwater from 17 cities in the Eastern China and their correlations with surface waters. Bulletin of Environmental Contamination and Toxicology 99 (2):224–31. doi:10.1007/s00128-017-2109-3.
  • Tang, J. W., Y. Z. Zhang, J. J. Sun, X. L. Shi, C. Sun, and C. H. Zhang. 2019. Occurrence and characteristics of perfluoroalkyl substances (PFASs) in electroplating industrial wastewater. Water Science and Technology 79 (4):731–40. doi:10.2166/wst.2019.092.
  • Taniyasu, S., K. Kannan, M. K. So, A. Gulkowska, E. Sinclair, T. Okazawa, and N. Yamashita. 2005. Analysis of fluorotelomer alcohols, fluorotelomer acids, and short- and long-chain perfluorinated acids in water and biota. Journal of Chromatography A 1093 (1–2):89–97. doi:10.1016/j.chroma.2005.07.053.
  • United Nations Environment Program (UNEP). 2020. The new POPs under the Stockholm convention on POPs. Available at: http://www.pops.int/TheConvention/ThePOPs/TheNewPOPs/tabid/2511/Default.aspx
  • United States Environmental Protection Agency (USEPA). 2005. Guidelines for carcinogen risk assessment. EPA/630/P-03/001B. Washington, DC: Risk Assessment Forum. Available at: http://www3.epa.gov/airtoxics/cancer_guidelines_final_3-25-05.pdf
  • United States Environmental Protection Agency (USEPA). 2016a. Drinking water health advisory for Perfluorooctane Sulfonate (PFOS). EPA 822R16004. Available at: http://www.epa.gov/safewater
  • United States Environmental Protection Agency (USEPA). 2016b. Drinking water health advisory for Perfluorooctanoic acid (PFOA). EPA 822R16005. Available at: http://www.epa.gov/safewater
  • Villagrasa, M., M. L. de Alda, and D. Barcelo. 2006. Environmental analysis of fluorinated alkyl substances by liquid chromatography-(tandem) mass spectrometry: A review. Analytical and Bioanalytical Chemistry 386 (4):953–72. doi:10.1007/s00216-006-0471-9.
  • Wang, T., R. Vestergren, D. Herzke, J. C. Yu, and I. T. Cousins. 2016. Levels, isomer profiles, and estimated riverine mass discharges of perfluoroalkyl acids and fluorinated alternatives at the mouths of Chinese rivers. Environmental Science & Technology 50 (21):11584–92. doi:10.1021/acs.est.6b03752.
  • Wang, X. P., J. Schuster, K. C. Jones, and P. Gong. 2018. Occurrence and spatial distribution of neutral perfluoroalkyl substances and cyclic volatile methylsiloxanes in the atmosphere of the Tibetan plateau. Atmospheric Chemistry and Physics 18 (12):8745–55. doi:10.5194/acp-18-8745-2018.
  • Yamashita, N., K. Kannan, S. Taniyasu, Y. Horii, G. Petrick, and T. Gamo. 2005. A global survey of perfluorinated acids in oceans. Marine Pollution Bulletin 51 (8–12):658–68. doi:10.1016/j.marpolbul.2005.04.026.
  • Zeng, X. W., M. S. Bloom, S. C. Dharmage, C. J. Lodge, D. Chen, S. S. Li, Y. M. Guo, M. Roponen, P. Jalava, M. R. Hirvonen, et al. 2019. Prenatal exposure to perfluoroalkyl substances is associated with lower hand, foot and mouth disease viruses antibody response in infancy: Findings from the Guangzhou Birth Cohort Study. The Science of the Total Environment 663 (1):60–7. doi:10.1016/j.scitotenv.2019.01.325.
  • Zheng, B. H., X. L. Liu, R. Guo, Q. Fu, X. R. Zhao, S. J. Wang, S. Chang, X. Wang, M. J. Geng, and G. Yang. 2017. Distribution characteristics of poly- and perfluoroalkyl substances in the Yangtze River Delta. Journal of Environmental Sciences China 61 (1):97–109. doi:CNKI:SUN:HJKB.0.2017-11-012 doi:10.1016/j.jes.2017.09.015.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.