200
Views
4
CrossRef citations to date
0
Altmetric
Environmental Analysis

Removal of Phloridzin by Chitosan-Modified Biochar Prepared from Apple Branches

ORCID Icon, , , , &
Pages 903-918 | Received 08 May 2020, Accepted 20 Jun 2020, Published online: 03 Jul 2020

References

  • Afzal, M. Z., X. F. Sun, J. Liu, C. Song, S. G. Wang, and A. Javed. 2018. Enhancement of ciprofloxacin sorption on chitosan/biochar hydrogel beads. The Science of the Total Environment 639:560–9. doi:10.1016/j.scitotenv.2018.05.129.
  • Ahmed, M. J. 2017. Adsorption of quinolone, tetracycline, and penicillin antibiotics from aqueous solution using activated carbons: Review. Environmental Toxicology and Pharmacology 50:1–10. doi:10.1016/j.etap.2017.01.004.
  • Banerjee, A., M. C. Chattopadhyaya, V. Srivastava, and Y. C. Sharma. 2014. Adsorption studies of methylene blue onto activated saw dust: Kinetics. equilibrium, and thermodynamic studies. Environmental Progress & Sustainable Energy 33 (3):790–9. doi:10.1002/ep.11840.
  • Chen, T., Y. Zhang, H. Wang, W. Lu, Z. Zhou, Y. Zhang, and L. Ren. 2014. Influence of pyrolysis temperature on characteristics and heavy metal adsorptive performance of biochar derived from municipal sewage sludge. Bioresource Technology 164:47–54. doi:10.1016/j.biortech.2014.04.048.
  • Chen, Y., Y. C. Lin, S. H. Ho, Y. Zhou, and N. Ren. 2018. Highly efficient adsorption of dyes by biochar derived from pigments-extracted macroalgae pyrolyzed at different temperature. Bioresource Technology 259:104–10. doi:10.1016/j.biortech.2018.02.094.
  • Chen, Z., T. Liu, J. Tan, Z. Zheng, H. Wang, Q. Shao, G. Chen, Z. Li, Y. Chen, J. Zhu, et al. 2018. Characteristics and mechanisms of cadmium adsorption from aqueous solution using lotus seedpod-derived biochar at two pyrolytic temperatures. Environmental Science and Pollution Research International 25 (12):11854–66. doi:10.1007/s11356-018-1460-1.
  • Cui, X., X. Dai, K. Y. Khan, T. Li, X. Yang, and Z. He. 2016. Removal of phosphate from aqueous solution using magnesium-alginate/chitosan modified biochar microspheres derived from Thalia dealbata. Bioresource Technology 218:1123–32. doi:10.1016/j.biortech.2016.07.072.
  • Dima, J., B. C. Sequeiros, and N. E. Zaritzky. 2015. Hexavalent chromium removal in contaminated water using reticulated chitosan micro/nanoparticles from seafood processing wastes. Chemosphere 141:100–11. doi:10.1016/j.chemosphere.2015.06.030.
  • Ding, Z., X. Hu, Y. Wan, S. Wang, and B. Gao. 2016. Removal of lead, copper, cadmium, zinc, and nickel from aqueous solution by alkali-modified biochar: Batch and column tests. Journal of Industrial and Engineering Chemistry 33:239–45. doi:10.1016/j.jiec.2015.10.007.
  • Gosch, C., H. Halbwirth, and K. Stich. 2010. Phloridzin: Biosynthesis, distribution and physiological relevance in plants. Phytochemistry 71 (8–9):838–43. doi:10.1016/j.phytochem.2010.03.003.
  • Han, Y., X. Cao, X. Ouyang, S. Sohi, and J. Chen. 2016. Adsorption kinetics of magnetic biochar derived from peanut hull on removal of Cr (VI) from aqueous solution: Effects of production conditions and particle size. Chemosphere 145:336–41. doi:10.1016/j.chemosphere.2015.11.050.
  • Herath, I., P. Kumarathilaka, M. I. Al-Wabel, A. Abduljabbar, M. Ahmad, A. R. A. Usman, and M. Vithanage. 2016. Mechanistic modeling of glyphosate interaction with rice husk derived engineered biochar. Microporous and Mesoporous Materials 225:280–8. doi:10.1016/j.micromeso.2016.01.017.
  • Hofmann, A., L. Wittenmayer, G. Arnold, A. Schieber, and W. Merbach. 2012. Root exudation of phloridzin by apple seedlings (Malus x domestica Borkh.) with symptoms of apple replant disease. Journal of Applied Botany and Food Quality 82:193–8.
  • Huang, X., Y. Liu, S. Liu, X. Tan, Y. Ding, G. Zeng, Y. Zhou, M. Zhang, S. Wang, and B. Zheng. 2016. Effective removal of Cr (VI) using β-cyclodextrin–chitosan modified biochars with adsorption/reduction bifuctional roles. RSC Advances 6 (1):94–104. doi:10.1039/C5RA22886G.
  • Jang, H., M. S. Yoo, Y. K. Choi, S. Park, and E. Kan. 2018. Adsorption isotherm, kinetic modeling and mechanism of tetracycline on Pinus taeda - derived activated biochar. Bioresource Technology 259:24–31. doi:10.1016/j.biortech.2018.03.013.
  • Jin, J., S. Li, X. Peng, W. Liu, C. Zhang, Y. Yang, L. Han, Z. Du, K. Sun, and X. Wang. 2018. HNO3 modified biochars for uranium (VI) removal from aqueous solution. Bioresource Technology 256:247–53. doi:10.1016/j.biortech.2018.02.022.
  • Jing, X., Y. Wang, W. Liu, Y. Wang, and H. Jiang. 2014. Enhanced adsorption performance of tetracycline in aqueous solutions by methanol-modified biochar. Chemical Engineering Journal 248:168–74. doi:10.1016/j.cej.2014.03.006.
  • Jung, K. W., T. U. Jeong, M. J. Hwang, K. Kim, and K. H. Ahn. 2015. Phosphate adsorption ability of biochar/Mg-Al assembled nanocomposites prepared by aluminum-electrode based electro-assisted modification method with MgCl₂ as electrolyte. Bioresource Technology 198:603–10. doi:10.1016/j.biortech.2015.09.068.
  • Li, H., R. Qu, C. Li, W. Guo, X. Han, F. He, Y. Ma, and B. Xing. 2014. Selective removal of polycyclic aromatic hydrocarbons (PAHs) from soil washing effluents using biochars produced at different pyrolytic temperatures. Bioresource Technology 163:193–8. doi:10.1016/j.biortech.2014.04.042.
  • Liu, B., B. Huang, L. Chai, Y. Liu, G. Zeng, X. Wang, W. Zeng, M. Shang, J. Deng, and Z. Zhou. 2017. Enhancement of As (V) adsorption from aqueous solution by a magnetic chitosan/biochar composite. RSC Advances 7 (18):10891–900. doi:10.1039/C6RA27341F.
  • Liu, B., X. Lv, X. Meng, G. Yu, and D. Wang. 2013. Removal of Pb (II) from aqueous solution using dithiocarbamate modified chitosan beads with Pb (II) as imprinted ions. Chemical Engineering Journal 220:412–9. doi:10.1016/j.cej.2013.01.071.
  • Liu, E., G. Wang, Y. Li, X. Shen, X. Chen, F. Song, S. Wu, Q. Chen, and Z. Mao. 2014. Replanting affects the tree growth and fruit quality of gala apple. Journal of Integrative Agriculture 13 (8):1699–706. doi:10.1016/S2095-3119(13)60620-6.
  • Liu, P., W. Liu, H. Jiang, J. Chen, W. Li, and H. Yu. 2012. Modification of bio-char derived from fast pyrolysis of biomass and its application in removal of tetracycline from aqueous solution. Bioresource Technology 121:235–40. doi:10.1016/j.biortech.2012.06.085.
  • Mazzola, M. L., and M. Manici. 2012. Apple replant disease: Role of microbial ecology in cause and control. Annual Review of Phytopathology 50:45–65. doi:10.1146/annurev-phyto-081211-173005.
  • Oliveira, F. R., A. K. Patel, D. P. Jaisi, S. Adhikari, H. Lu, and S. K. Khanal. 2017. Environmental application of biochar: Current status and perspectives. Bioresource Technology 246:110–22. doi:10.1016/j.biortech.2017.08.122.
  • Peiris, C. S., R. Gunatilake, T. E. Mlsna, D. Mohan, and M. Vithanage. 2017. Biochar based removal of antibiotic sulfonamides and tetracyclines in aquatic environments: A critical review. Bioresource Technology 246:150–9. doi:10.1016/j.biortech.2017.07.150.
  • Rajapaksha, A. U., S. S. Chen, D. C. W. Tsang, M. Zhang, M. Vithanage, S. Mandal, B. Gao, N. S. Bolan, and Y. S. Ok. 2016. Engineered/designer biochar for contaminant removal/immobilization from soil and water: Potential and implication of biochar modification. Chemosphere 148:276–91. doi:10.1016/j.chemosphere.2016.01.043.
  • Ren, X., Z. Yan, X. He, X. Li, and B. Qin. 2017. Allelochemicals from rhizosphere soils of Glycyrrhiza uralensis Fisch: Discovery of the autotoxic compounds of a traditional herbal medicine. Industrial Crops and Products 97:302–7. doi:10.1016/j.indcrop.2016.12.035.
  • Sekar, M. V. Sakthi, S. Rengaraj. 2004. Kinetics and equilibrium adsorption study of lead (II) onto activated carbon prepared from coconut shell. Journal of Colloid and Interface Science. 279: 307–313. doi: 10.1016/j.jcis.2004.06.042.
  • Sha, H., Y. Wu, Y. Fan, and P. Fang. 2017. The synthesis of Fe-Al hydroxides coated with EDTA-Cross-linked ß-Cyclodextrin and adsorption mechanism for As (III). Journal of Molecular Liquids 242:520–30. doi:10.1016/j.molliq.2017.07.022.
  • Tan, G., W. Sun, Y. Xu, H. Wang, and N. Xu. 2016. Sorption of mercury (II) and atrazine by biochar, modified biochars and biochar based activited carbon in aqueous solution. Bioresource Technology 211:727–35. doi:10.1016/j.biortech.2016.03.147.
  • Tan, G., Y. Mao, H. Wang, and N. Xu. 2020. A comparative study of arsenic (V), tetracycline and nitrate ions adsorption onto magnetic biochars and activated carbon. Chemical Engineering Research and Design 159:582–91. doi:10.1016/j.cherd.2020.05.011.
  • Tewoldemedhin, Y. T., M. Mazzola, L. Mostert, and A. Mcleod. 2011. Cylindrocarpon species associated with apple tree roots in South Africa and their quantification using real-time PCR. European Journal of Plant Pathology 129 (4):637–51. doi:10.1007/s10658-010-9728-4.
  • Wang, L., L. Yang, Y. Li, Y. Zhang, X. Ma, and Z. Ye. 2010. Study on adsorption mechanism of Pb (II) and Cu (II) in aqueous solution using PS-EDTA resin. Chemical Engineering Journal 163 (3):364–72. doi:10.1016/j.cej.2010.08.017.
  • Wang, S., B. Gao, A. R. Zimmerman, Y. Li, L. Q. Ma, W. G. Harris, and K. W. Migliaccio. 2015. Removal of arsenic by magnetic biochar prepared from pinewood and natural hematite. Bioresource Technology 175:391–5. doi:10.1016/j.biortech.2014.10.104.
  • Wang, S., B. Gao, Y. Li, A. Mosa, A. R. Zimmerman, L. Q. Ma, W. G. Harris, and K. W. Migliaccio. 2015. Manganese oxide-modified biochars: Preparation, characterization, and sorption of arsenate and lead. Bioresource Technology 181:13–7. doi:10.1016/j.biortech.2015.01.044.
  • Winkelmann, T., K. Smalla, W. Amelung, G. Baab, G. Grunewaldt-Stocker, X. Kanfra, R. Meyhofer, S. Reim, M. Schmitz, D. Vetterlein, et al. 2019. Apple replant disease: Causes and mitigation strategies. Current Issues in Molecular Biology 30:89–106. doi:10.21775/cimb.030.089.
  • Wu, W., J. Li, T. Lan, K. Muller, N. K. Niazi, X. Chen, S. Xu, L. Zheng, Y. Chu, J. Li, et al. 2017. Unraveling sorption of lead in aqueous solutions by chemically modified biochar derived from coconut fiber: A microscopic and spectroscopic investigation. The Science of the Total Environment 576:766–74. doi:10.1016/j.scitotenv.2016.10.163.
  • Xue, Y., B. Gao, Y. Yao, M. Inyang, M. Zhang, A. R. Zimmerman, and K. S. Ro. 2012. Hydrogen peroxide modification enhances the ability of biochar (hydrochar) produced from hydrothermal carbonization of peanut hull to remove aqueous heavy metals: Batch and column tests. Chemical Engineering Journal 200–202:673–80. doi:10.1016/j.cej.2012.06.116.
  • Yin, C., L. Xiang, G. Wang, Y. Wang, X. Shen, X. Chen, and Z. Mao. 2017. Phloridzin promotes the growth of Fusarium moniliforme (Fusarium verticillioides). Scientia Horticulturae 214:187–94. doi:10.1016/j.scienta.2016.11.035.
  • Yin, C., Y.-N. Duan, L. Xiang, G. Wang, X. Zhang, X. Shen, X. Chen, M. Zhang, and Z. Mao. 2018. Effects of phloridzin, phloretin and benzoic acid at the concentrations measured in soil on the root proteome of Malus hupehensis Rehd Seedlings. Scientia Horticulturae 228:10–7. doi:10.1016/j.scienta.2017.09.044.
  • Zhang, J., H. Z. Mao, L. Wang, and H. Shu. 2007. Bioassay and identification of root exudates of three fruit tree species. Journal of Integrative Plant Biology 49 (3):257–61. doi:10.1111/j.1744-7909.2007.00307.x.
  • Zhang, X., X. Zhang, and Z. Chen. 2017. Biosorption of Cr (VI) from aqueous solution by biochar derived from the leaf of Leersia hexandra Swartz. Environmental Earth Sciences 76 (2):67. doi:10.1007/s12665-016-6336-4.
  • Zhou, Z., Y. Liu, S. Liu, H. Liu, G. Zeng, X. Tan, C. Yang, Y. Ding, Z. Yan, and X. Cai. 2017. Sorption performance and mechanisms of arsenic (V) removal by magnetic gelatin-modified biochar. Chemical Engineering Journal 314:223–31. doi:10.1016/j.cej.2016.12.113.
  • Zhu, X., C. Li, J. Li, B. Xie, J. Lu, and Y. Li. 2018. Thermal treatment of biochar in the air/nitrogen atmosphere for developed mesoporosity and enhanced adsorption to tetracycline. Bioresource Technology 263:475–82. doi:10.1016/j.biortech.2018.05.041.
  • Zhu, Y., H. Li, G. Zhang, F. Meng, L. Li, and S. Wu. 2018. Removal of hexavalent chromium from aqueous solution by different surface-modified biochars: Acid washing, nanoscale zero-valent iron and ferric iron loading. Bioresource Technology 261:142–50. doi:10.1016/j.biortech.2018.04.004.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.