311
Views
12
CrossRef citations to date
0
Altmetric
Chemometrics

Calibration Transfer for Near-Infrared (NIR) Spectroscopy Based on Neighborhood Preserving Embedding

, , , &
Pages 947-965 | Received 29 Feb 2020, Accepted 24 Jun 2020, Published online: 13 Jul 2020

References

  • Abdi, H. 2010. Partial least squares regression and projection on latent structure regression (PLS Regression). WIREs Computational Statistics 2 (1):97–106. doi:10.1002/wics.51.
  • Amat-Tosello, S., N. Dupuy, and J. Kister. 2009. Contribution of external parameter orthogonalisation for calibration transfer in short waves-near infrared spectroscopy application to gasoline quality. Analytica Chimica Acta 642 (1-2):6–11. doi:10.1016/j.aca.2009.01.003.
  • Andrew, A., and T. Fearn. 2004. Transfer by orthogonal projection: Making near-infrared calibrations robust to between-instrument variation. Chemometrics and Intelligent Laboratory Systems 72 (1):51–6. doi:10.1016/j.chemolab.2004.02.004.
  • Blackburn, M. 2005. NIR of corn samples for standardization benchmarking. Eigenvector research incorporated. http://www.eigenvector.com/data/Corn/index.html.
  • Bouveresse, E., D. L. Massart, and P. Dardenne. 1994. Calibration transfer across near-infrared spectrometric instruments using Shenk's algorithm: Effects of different standardisation samples. Analytica Chimica Acta 297 (3):405–16. doi:10.1016/0003-2670(94)00237-1.
  • Chen, W. R., J. Bin, H. M. Lu, Z. M. Zhang, and Y. Z. Liang. 2016. Calibration transfer via an extreme learning machine auto-encoder. The Analyst 141 (6):1973–80. doi:10.1039/C5AN02243F.
  • Claeys, D. D., T. Verstraelen, E. Pauwels, C. V. Stevens, M. Waroquier, and V. Van Speybroeck. 2010. Conformational sampling of m acrocyclic alkenes using a Kennard-Stone-based algorithm. The Journal of Physical Chemistry A 114 (25):6879–87. doi:10.1021/jp1022778.
  • de La Torre, F., and M. J. Black. 2003. A framework for robust subspace learning. International Journal of Computer Vision 54 (1-3):117–42.
  • Du, W., Z. P. Chen, L. J. Zhong, S. X. Wang, R. Q. Yu, A. Nordon, D. Littlejohn, and M. Holden. 2011. Maintaining the predictive abilities of multivariate calibration models by spectral space transformation. Analytica Chimica Acta 690 (1):64–70. doi:10.1016/j.aca.2011.02.014.
  • Fan, W., Y. Z. Liang, D. L. Yuan, and J. J. Wang. 2008. Calibration model transfer for near-infrared spectra based on canonical correlation analysis. Analytica Chimica Acta 623 (1):22–9. doi:10.1016/j.aca.2008.05.072.
  • Fearn, T. 2001. Standardisation and calibration transfer for near infrared instruments: A review. Journal of near Infrared Spectroscopy 9 (4):229–44. doi:10.1255/jnirs.309.
  • Feudale, R. N., N. A. Woody, H. Tan, A. J. Myles, S. D. Brown, and J. Ferré. 2002. Transfer of multivariate calibration models: A review. Chemometrics and Intelligent Laboratory Systems 64 (2):181–92. doi:10.1016/S0169-7439(02)00085-0.
  • Fonollosa, J., L. Fernandez, A. Gutiérrez-Gálvez, R. Huerta, and S. Marco. 2016. Calibration transfer and drift counteraction in chemical sensor arrays using Direct Standardization. Sensors and Actuators B: Chemical 236:1044–53. doi:10.1016/j.snb.2016.05.089.
  • Gemperline, P. J., J. Cho, P. K. Aldridge, and S. S. Sekulic. 1996. Appearance of discontinuities in spectra transformed by the piecewise direct instrument standardization procedure. Analytical Chemistry 68 (17):2913–5. doi:10.1021/ac9604191.
  • He, X. F., D. Cai, and W. L. Min. 2005a. Statistical and computational analysis of locality preserving projection. Proceedings of the 22nd international conference on Machine learning, Bonn, 281–288. doi:10.1145/1102351.1102387.
  • He, X. F., D. Cai, S. C. Yan, and H. J. Zhang. 2005b. Neighborhood preserving embedding. Tenth IEEE International Conference on Computer Vision, 1208–1213. Beijing: IEEE.
  • Jiang, H., W. Wang, C. L. Mei, Y. H. Huang, and Q. S. Chen. 2017. Rapid diagnosis of normal and abnormal condition in solid state fermentation of bioethanol using FT-NIR spectroscopy. Energy & Fuels 31 (11):12959–64. doi:10.1021/acs.energyfuels.7b02170.
  • Kalivas, J. H., G. S. Siano, E. Andries, and H. C. Goicoechea. 2009. Calibration maintenance and transfer using Tikhonov regularization approaches. Applied Spectroscopy 63 (7):800–9. doi:10.1366/000370209788701206.
  • Kunz, M. R., J. H. Kalivas, and E. Andries. 2010. Model updating for spectral calibration maintenance and transfer using 1-Norm variants of Tikhonov Regularization. Analytical Chemistry 82 (9):3642–9. doi:10.1021/ac902881m.
  • Law, M. H. C., and A. K. Jain. 2006. Incremental nonlinear dimensionality reduction by manifold learning. IEEE Transactions on Pattern Analysis and Machine Intelligence 28 (3):377–91. doi:10.1109/TPAMI.2006.56.
  • Li, F., J. X. Wang, B. P. Tang, and D. Q. Tian. 2014. Life grade recognition method based on supervised uncorrelated orthogonal locality preserving projection and K-nearest neighbor classifier. Neurocomputing 138:271–82. doi:10.1016/j.neucom.2014.01.037.
  • Li, X. Y., W. S. Cai, and X. G. Shao. 2015. Correcting multivariate calibration model for near infrared spectral analysis without using standard samples. Journal of near Infrared Spectroscopy 23 (5):285–91. doi:10.1255/jnirs.1165.
  • Liao, Y. H., and V. R. Vemuri. 2002. Use of k-nearest neighbor classifier for intrusion detection. Computers & Security 21 (5):439–48. doi:10.1016/S0167-4048(02)00514-X.
  • Lin, Z. Z., B. Xu, Y. Li, X. Y. Shi, and Y. J. Qiao. 2013. Application of orthogonal space regression to calibration transfer without standards. Journal of Chemometrics 27 (11):406–13. doi:10.1002/cem.2536.
  • Liu, Y., W. S. Cai, and X. G. Shao. 2016. Linear model correction: A method for transferring a near-infrared multivariate calibration model without standard samples. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 169:197–201. doi:10.1016/j.saa.2016.06.041.
  • Liu, Y., H. Xu, Z. Z. Xia, and Z. Y. Gong. 2018. Multi-spectrometer calibration transfer based on independent component analysis. The Analyst 143 (5):1274–80. doi:10.1039/C7AN01555K.
  • Ma, Y. Q., and Y. Fu. 2011. Manifold learning theory and applications. Boca Raton, FL: CRC Press.
  • Mabood, F., F. Jabeen, M. Ahmed, J. Hussain, S. A. A. Al Mashaykhi, Z. M. A. Al Rubaiey, S. Farooq, R. Boqué, L. Ali, Z. Hussain, et al. 2017. Development of new NIR-spectroscopy method combined with multivariate analysis for detection of adulteration in camel milk with goat milk. Food Chemistry 221:746–50. doi:10.1016/j.foodchem.2016.11.109.
  • Malli, B., A. Birlutiu, and T. Natschläger. 2017. Standard-free calibration transfer-An evaluation of different techniques. Chemometrics and Intelligent Laboratory Systems 161:49–60. doi:10.1016/j.chemolab.2016.12.008.
  • Mees, C., F. Souard, C. Delporte, E. Deconinck, P. Stoffelen, C. Stévigny, J.-M. Kauffmann, and K. De Braekeleer. 2018. Identification of coffee leaves using FT-NIR spectroscopy and SIMCA. Talanta 177:4–11. doi:10.1016/j.talanta.2017.09.056.
  • Mou, Y., L. Zhou, S. J. Yu, W. Z. Chen, X. Zhao, and X. G. You. 2016. Robust calibration model transfer. Chemometrics and Intelligent Laboratory Systems 156:62–71. doi:10.1016/j.chemolab.2016.05.014.
  • Oliverio, M., S. Bonacci, M. Nardi, and A. Procopio. 2016. Determination of total organic carbon on hybrid organic-inorganic mesoporous silica by FT-NIR spectroscopy. RSC Advances 6 (23):18909–15. doi:10.1039/C6RA01293K.
  • Peng, J. T., S. L. Peng, A. Jiang, and J. Tan. 2011. Near-infrared calibration transfer based on spectral regression. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 78 (4):1315–20. doi:10.1016/j.saa.2011.01.004.
  • Poerio, D. V., and S. D. Brown. 2018. Dual-domain calibration transfer using orthogonal projection. Applied Spectroscopy 72 (3):378–91. doi:10.1177/0003702817724164.
  • Qu, J., Z. N. Xing, and J. X. Wang. 2013. NIR model transfer based on wavelet transform algorithms. Spectroscopy 28 (6):36–41.
  • Sjöblom, J., O. Svensson, M. Josefson, H. Kullberg, and S. Wold. 1998. An evaluation of orthogonal signal correction applied to calibration transfer of near infrared spectra. Chemometrics and Intelligent Laboratory Systems 44 (1-2):229–44. doi:10.1016/S0169-7439(98)00112-9.
  • Song, B., Y. X. Ma, and H. B. Shi. 2014. Multimode process monitoring using improved dynamic neighborhood preserving embedding. Chemometrics and Intelligent Laboratory Systems 135:17–30. doi:10.1016/j.chemolab.2014.03.013.
  • Tan, H. W., S. T. Sum, and S. D. Brown. 2002. Improvement of a standard-free method for near-infrared calibration transfer. Applied Spectroscopy 56 (8):1098–106. doi:10.1366/000370202321275015.
  • Terhoevenurselmans, T. 1990. Sample selection based on the Kennard-Stone algorithm. Genetics Research 56 (2-3):107–14.
  • Wang, Y., and Y. Wu. 2010. Complete neighborhood preserving embedding for face recognition. Pattern Recognition 43 (3):1008–15. doi:10.1016/j.patcog.2009.08.009.
  • Wang, Y. B., H. F. Yuan, and W. Z. Lu. 2005. A new calibration transfer method based on target factor analysis. Guang pu Xue yu Guang pu Fen xi = Guang pu 25 (3):398–401.
  • Wang, Y. D., D. J. Veltkamp, and B. R. Kowalski. 1991. Multivariate instrument standardization. Analytical Chemistry 63 (23):2750–6. doi:10.1021/ac00023a016.
  • Wise, B. M., H. Martens, M. Høy, R. Bro, and P. B. Brockhoff. 2001. Calibration transfer by generalized least squares. Proceedings of the Seventh Scandinavian Symposium on Chemometrics (SSC7), Copenhagen, Denmark, Copenhagen, Denmark, 19–23.
  • Wold, S., M. Sjöström, and L. Eriksson. 2001. PLS-regression: A basic tool of chemometrics. Chemometrics and Intelligent Laboratory Systems 58 (2):109–30. doi:10.1016/S0169-7439(01)00155-1.
  • Woody, N. A., R. N. Feudale, A. J. Myles, and S. D. Brown. 2004. Transfer of multivariate calibrations between four near-infrared spectrometers using orthogonal signal correction. Analytical Chemistry 76 (9):2595–600. doi:10.1021/ac035382g.
  • Workman, J. J. 2018. A review of calibration transfer practices and instrument differences in spectroscopy. Applied Spectroscopy 72 (3):340–65. doi:10.1177/0003702817736064.
  • Yoon, J., B. Lee, and C. Han. 2002. Calibration transfer of near-infrared spectra based on compression of wavelet coefficients. Chemometrics and Intelligent Laboratory Systems 64 (1):1–14. doi:10.1016/S0169-7439(02)00042-4.
  • Zhang, F. Y., R. Q. Zhang, J. Ge, W. C. Chen, W. Y. Yang, and Y. P. Du. 2018a. Calibration transfer based on the weight matrix (CTWM) of PLS for near infrared (NIR) spectral analysis. Analytical Methods 10 (18):2169–79. doi:10.1039/C8AY00248G.
  • Zhang, J., X. Y. Cui, W. S. Cai, and X. G. Shao. 2018b. Modified linear model correction: A calibration transfer method without standard samples. NIR News 29 (8):24–7. doi:10.1177/0960336018804395.
  • Zheng, K. Y., X. Zhang, J. Iqbal, W. Fan, T. Wu, Y. P. Du, and Y. Z. Liang. 2014. Calibration transfer of near-infrared spectra for extraction of informative components from spectra with canonical correlation analysis. Journal of Chemometrics 28 (10):773–84. doi:10.1002/cem.2637.
  • Zou, C. M., H. M. Zhu, J. R. Shen, Y. He, J. E. Su, X. Q. Fan, H. M. Lu, Z. M. Zhang, and Y. Chen. 2019. Scalable calibration transfer without standards via dynamic time warping for near-infrared spectroscopy. Analytical Methods 11 (35):4481–93. doi:10.1039/C9AY01139K.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.