263
Views
5
CrossRef citations to date
0
Altmetric
Sample Preparation

Facile Synthesis of Hydrophilic Magnetic Mesoporous Silica Microspheres for Selective Enrichment of Glycopeptides and Glycans

, , , &
Pages 966-978 | Received 25 Mar 2020, Accepted 25 Jun 2020, Published online: 08 Jul 2020

References

  • Bi, C.-F., Y.-R. Zhao, L.-J. Shen, K. Zhang, X.-W. He, L.-X. Chen, and Y.-K. Zhang. 2015. Click synthesis of hydrophilic maltose-functionalized iron oxide magnetic nanoparticles based on dopamine anchors for highly selective enrichment of glycopeptides. ACS Applied Materials & Interfaces 7 (44):24670–8. doi:10.1021/acsami.5b06991.
  • Chen, L.-L., D. Ding, Q.-Y. Sheng, L. Yu, X.-P. Liu, and X.-M. Liang. 2018. Selective enrichment of N-linked glycopeptides and glycans by using a dextran-modified hydrophilic material. Journal of Separation Science 41 (9):2003–11. doi:10.1002/jssc.201700995.
  • Chen, Y.-J., Z.-C. Xiong, L.-Y. Zhang, J.-Y. Zhao, Q.-Q. Zhang, L. Peng, W.-B. Zhang, M.-L. Ye, and H.-F. Zou. 2015. Facile synthesis of zwitterionic polymer-coated core-shell magnetic nanoparticles for highly specific capture of N-linked glycopeptides. Nanoscale 7 (7):3100–8. doi:10.1039/c4nr05955g.
  • Feng, X.-Y., C.-H. Deng, M.-X. Gao, G.-Q. Yan, and X.-M. Zhang. 2018. Novel synthesis of glucose functionalized magnetic graphene hydrophilic nanocomposites via facile thiolation for high-efficient enrichment of glycopeptides. Talanta 179:377–85. doi:10.1016/j.talanta.2017.11.040.
  • Frey, N.-A., S. Peng, K. Cheng, and S.-H. Sun. 2009. Magnetic nanoparticles: Synthesis, functionalization, and applications in bioimaging and magnetic energy storage. Chemical Society Reviews 38 (9):2532–42. doi:10.1039/b815548h.
  • Helenius, A., and M. Aebi. 2001. Intracellular functions of N-linked glycans. Science 291 (5512):2364–9. doi:10.1126/science.291.5512.2364.
  • Jiang, B., Y. Liang, Q. Wu, H. Jiang, K.-G. Yang, L.-H. Zhang, Z. Liang, X.-J. Peng, and Y.-K. Zhang. 2014. New GO-PEI-Au-L-Cys ZIC-HILIC composites: Synthesis and selective enrichment of glycopeptides. Nanoscale 6 (11):5616–9. doi:10.1039/c4nr00274a.
  • Kuo, C.-W., I.-L. Wu, H.-H. Hsiao, and K.-H. Khoo. 2012. Rapid glycopeptide enrichment and N-glycosylation site mapping strategies based on amine-functionalized magnetic nanoparticles. Analytical and Bioanalytical Chemistry 402 (9):2765–76. doi:10.1007/s00216-012-5724-1.
  • Li, X.-L., H.-L. Liu, G.-Y. Qing, S.-T. Wang, and X.-M. Liang. 2014. Efficient enrichment of glycopeptides using phenylboronic acid polymer brush modified silica microspheres. Journal of Materials Chemistry B 2 (16):2276–81. doi:10.1039/c4tb00130c.
  • Li, Y., X.-M. Zhang, and C.-H. Deng. 2013. Functionalized magnetic nanoparticles for sample preparation in proteomics and peptidomics analysis. Chemical Society Reviews 42 (21):8517–39. doi:10.1039/c3cs60156k.
  • Liu, J., Z.-K. Sun, Y.-H. Deng, Y. Zou, C.-Y. Li, X.-H. Guo, L.-Q. Xiong, Y. Gao, F.-Y. Li, and D. Y. Zhao. 2009. Highly water‐dispersible biocompatible magnetite particles with low cytotoxicity stabilized by citrate groups. Angewandte Chemie International Edition 121 (32):5989–93. doi:10.1002/anie.200901566.
  • Liu, Y.-J., D.-M. Fu, L. Yu, Y.-S. Xiao, X.-J. Peng, and X.-M. Liang. 2016. Oxidized dextran facilitated synthesis of a silica-based concanavalin a material for lectin affinity enrichment of glycoproteins/glycopeptides. Journal of Chromatography A 1455:147–55. doi:10.1016/j.chroma.2016.05.093.
  • Lu, A.-H., E.-L. Salabas, and F. Schuth. 2007. Magnetic nanoparticles: Synthesis, protection, functionalization, and application. Angewandte Chemie International Edition 46 (8):1222–44. doi:10.1002/anie.200602866.
  • Ludwig, J.-A., and J.-N. Weinstein. 2005. Weinstein biomarkers in cancer staging, prognosis and treatment selection. Nature Reviews Cancer 5 (11):845–56. doi:10.1038/nrc1739.
  • Ma, W., L.-N. Xu, X.-J. Li, S.-S. Shen, M. Wu, Y. Bai, and H.-W. Liu. 2017. Cysteine-functionalized metal-organic framework: Facile synthesis and high efficient enrichment of N-linked glycopeptides in cell lysate. ACS Applied Materials & Interfaces 9 (23):19562–8. doi:10.1021/acsami.7b02853.
  • Ohtsubo, K., and J.-D. Marth. 2006. Glycosylation in cellular mechanisms of health and disease. Cell 126 (5):855–67. doi:10.1016/j.cell.2006.08.019.
  • Qiu, R., and F. Regnier. 2005. Use of multidimensional lectin affinity chromatography in differential glycoproteomics. Analytical Chemistry 77 (9):2802–9. doi:10.1021/ac048751x.
  • Selman, M. H. J., M. Hemayatkar, A.-M. Deelder, and M. Wuhrer. 2011. Cotton HILIC SPE microtips for microscale purification and enrichment of glycans and glycopeptides. Analytical Chemistry 83 (7):2492–9. doi:10.1021/ac1027116.
  • Sun, N.-R., C.-H. Deng, Y. Li, and X.-M. Zhang. 2014. Highly selective enrichment of N-linked glycan by carbon-functionalized ordered graphene/mesoporous silica composites. Analytical Chemistry 86 (4):2246–50. doi:10.1021/ac404103r.
  • Sun, N.-R., J.-W. Wang, J.-Z. Yao, and C.-H. Deng. 2017. Hydrophilic mesoporous silica materials for highly specific enrichment of N-linked glycopeptide. Analytical Chemistry 89 (3):1764–71. doi:10.1021/acs.analchem.6b04054.
  • Sun, N.-R., J.-Z. Yao, and C.-H. Deng. 2016. Designed synthesis of carbon-functional magnetic graphene mesoporous silica materials using polydopamine as carbon precursor for the selective enrichment of N-linked glycan. Talanta 148:439–43. doi:10.1016/j.talanta.2015.11.011.
  • Wang, H.-P., F.-L. Jiao, F.-Y. Gao, J.-J. Huang, Y. Zhao, Y.-H. Shen, Y.-J. Zhang, and X.-H. Qian. 2017. Qian. Facile synthesis of magnetic covalent organic frameworks for the hydrophilic enrichment of N-glycopeptides. Journal of Materials Chemistry. B 5 (22):4052–9. doi:10.1039/c7tb00700k.
  • Wang, Y.-A., J.-X. Wang, M.-X. Gao, and X.-M. Zhang. 2015. An ultra hydrophilic dendrimer-modified magnetic graphene with a polydopamine coating for the selective enrichment of glycopeptides. Journal of Materials Chemistry. B 3 (44):8711–6. doi:10.1039/c5tb01684c.
  • Xie, Y., C.-H. Deng, and Y. Li. 2017. Designed synthesis of ultra-hydrophilic sulfo-functionalized metal-organic frameworks with a magnetic core for highly efficient enrichment of the N-linked glycopeptides. Journal of Chromatography A 1508:1–6. doi:10.1016/j.chroma.2017.05.055.
  • Xiong, Z., L. Zhao, F. Wang, J. Zhu, H. Qin, R.-A. Wu, W. Zhang, and H. Zou. 2012. Synthesis of branched PEG brushes hybrid hydrophilic magnetic nanoparticles for the selective enrichment of N-linked glycopeptides. Chemical Communications 48 (65):8138–40. doi:10.1039/c2cc33600f.
  • Yang, S.-J., and H. Zhang. 2012. Glycan analysis by reversible reaction to hydrazide beads and mass spectrometry. Analytical Chemistry 84 (5):2232–8. doi:10.1021/ac202769k.
  • Yiu, H.-P., H.-J. Niu, E. Biermans, G.-V. Tendeloo, and M.-J. Rosseinsky. 2010. Designed multifunctional nanocomposites for biomedical applications. Advanced Functional Materials 20 (10):1599–609. doi:10.1002/adfm.200902117.
  • Zhang, J., T. He, L. Tang, and Z.-Q. Zhang. 2016. Boronic acid functionalized Fe3O4 magnetic microspheres for the specific enrichment of glycoproteins. Journal of Separation Science 39 (9):1691–9. doi:10.1002/jssc.201500921.
  • Zhang, J., L. Qi, W.-T. Zheng, Y.-L. Tian, A.-P. Chi, and Z.-Q. Zhang. 2017. Novel functionalized poly(glycidyl methacrylate-co-ethylene dimethacrylate) microspheres for the solid-phase extraction of glycopeptides/glycoproteins. Journal of Separation Science 40 (5):1107–14. doi:10.1002/jssc.201600780.
  • Zhang, Q., Y. Huang, B.-Y. Jiang, Y.-J. Hu, J.-J. Xie, X. Gao, B. Jia, H.-L. Shen, W.-J. Zhang, and P.-Y. Yang. 2018. In situ synthesis of magnetic mesoporous phenolic resin for the selective enrichment of glycopeptides. Analytical Chemistry 90 (12):7357–63. doi:10.1021/acs.analchem.8b00708.
  • Zhang, X.-H., X.-W. He, L.-X. Chen, and Y.-K. Zhang. 2014. A combination of distillation-precipitation polymerization and click chemistry: fabrication of boronic acid functionalized Fe3O4 hybrid composites for enrichment of glycoproteins. Journal of Materials Chemistry B 2 (21):3254–62. doi:10.1039/c4tb00379a.
  • Zhang, Y., M.-L. Kuang, J. Zhang, P.-Y. Yang, and H.-J. Lu. 2013. An accessible protocol for solid-phase extraction of N-linked glycopeptides through reductive amination by amine-functionalized magnetic nanoparticles. Analytical Chemistry 85 (11):5535–41. doi:10.1021/ac400733y.
  • Zheng, J., Y. Xiao, L. Wang, Z. Lin, H. Yang, L. Zhang, and G. Chen. 2014. Click synthesis of glucose-functionalized hydrophilic magnetic mesoporous nanoparticles for highly selective enrichment of glycopeptides and glycans. Journal of Chromatography A 1358:29–38. doi:10.1016/j.chroma.2014.06.070.
  • Zou, Z.-Z., M. Ibisate, Y. Zhou, R. Aebersold, Y.-N. Xia, and H. Zhang. 2008. Synthesis and evaluation of superparamagnetic silica particles for extraction of glycopeptides in the microtiter plate format. Analytical Chemistry 80 (4):1228–34. doi:10.1021/ac701950h.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.