218
Views
6
CrossRef citations to date
0
Altmetric
Electrochemistry

Simple and Efficient Synthesis of Various Sized Gold Nanoparticles for the Selective Electrochemical Determination of Dopamine

, , , , , & show all
Pages 1068-1084 | Received 07 Jan 2020, Accepted 06 Jul 2020, Published online: 03 Aug 2020

References

  • An, Y., W. J. Liu, P. Xue, Y. Ma, L. Q. Zhang, B. Zhu, M. Qi, L. Y. Li, Y. J. Zhang, Q. T. Wang, Y, et al. 2018. Autophagy promotes MSC-mediated vascularization in cutaneous wound healing via regulation of VEGF secretion. Cell Death & Disease 9 (2):58–71. doi:10.1038/s41419-017-0082-8.
  • Alkire, R. C., D. M. Kolb, J. Lipkowski, and P. Roos. 2011. Chapter 5. Structure, electrochemistry and applications of self-assembled monolayers of thiols. In Chemically Modified Electrodes, Wiley-VCH, New Jersey, USA. 197–255.
  • Anithaa, A. C., N. Lavanya, K. Asokan, and C. Sekar. 2015. WO3 nanoparticles based direct electrochemical dopamine sensor in the presence of ascorbic acid. Electrochimica Acta 167:294–302. doi:10.1016/j.electacta.2015.03.160.
  • Aparna, T. K., and R. Sivasubramanian. 2018. NiFe2O4 nanoparticles-decorated activated carbon nanocomposite based electrochemical sensor for selective detection of dopamine in presence of uric acid and ascorbic acid. Journal of Chemical Sciences. 130:3–11.
  • Behnaz, F. M., B. Jaleh, M. Nasrollahzadeh, Z. Issaabadi, and R. S. Varma. 2019. Laser ablation-assisted synthesis of GO/TiO2/Au nanocomposite: Applications in K3 [Fe3(CN)6] and nigrosin reduction. Molecular Catalysis 473:110401–10. doi:10.1016/j.mcat.2019.110401.
  • Chen, Z., Y. Tan, C. Zhang, L. Yin, H. Ma, N. Ye, Y. Lin, and H. Qiang. 2014. A colorimetric aptamer biosensor based on cationic polymer and gold nanoparticles for the ultrasensitive detection of thrombin. Biosensors & Bioelectronics 56:46–50. doi:10.1016/j.bios.2014.01.012.
  • Cheng, H., J. F. Lan, G. H. Wei, W. H. Huang, and J. K. Cheng. 2013. Study on antifouling performance of single-walled carbon nanotubes modified electrode and its application in determination of 5-Hydroxytryptamine. Chinese Journal of Analytical Chemistry (Chinese Version) 41 (4):540–5. doi:10.3724/SP.J.1096.2013.20997.
  • Di Ciano, P., D. F. Manvich, A. Pushparaj, A. Gappasov, E. J. Hess, D. Weinshenker, and B. Le Foll. 2018. Effects of disulfiram on choice behavior in a rodent gambling task: Association with catecholamine levels. Psychopharmacology 235 (1):23–35. doi:10.1007/s00213-017-4744-0.
  • Dong, J. P., X. M. Qu, L. J. Wang, and T. L. Wang. 2007. Electrochemical behavior of nitrogen-doped carbon nanotube modified electrodes. Acta Chimica Sinica 65:2405–10.
  • Ensafi, A. A., M. Taei, T. Khayamian, and A. Arabzadeh. 2010. Highly selective determination of ascorbic acid, dopamine, and uric acid by differential pulse voltammetry using poly (sulfonazo III) modified glassy carbon electrode. Sensors and Actuators B: Chemical 147 (1):213–21. doi:10.1016/j.snb.2010.02.048.
  • Han, K. N., H. M. Seo, J. K. Kim, Y. S. Kim, D. Y. Shin, B. H. Jung, H. S. Lim, S. W. Eom, and S. I. Moon. 2001. Development of a plastic Li-ion battery cell for EV applications. Journal of Power Sources 101 (2):196–200. doi:10.1016/S0378-7753(01)00672-3.
  • Hermans, A., A. T. Seipel, C. E. Miller, and R. M. Wightman. 2006. Carbon-fiber microelectrodes modified with 4-sulfobenzene have increased sensitivity and selectivity for catecholamines. Langmuir: The ACS Journal of Surfaces and Colloids 22 (5):1964–9. doi:10.1021/la053032e.
  • Hermans, A., and R. M. Wightman. 2006. Conical tungsten tips as substrates for the preparation of ultramicroelectrodes. Langmuir: The ACS Journal of Surfaces and Colloids 22 (25):10348–53. doi:10.1021/la061209e.
  • Gonon, F., R. Cespuglio, J. L. Ponchon, M. Buda, M. Jouvet, R. N. Adams, and J. F. Pujol. 1978. In vivo electrochemical determination of dopamine release in rat neostriatum. National Center for Biotechnology Information 286 (16):1203–6.
  • McCreery, R. L. 2008. Advanced carbon electrode materials for molecular electrochemistry. Chemical Reviews 108 (7):2646–87. doi:10.1021/cr068076m.
  • Kumar, M. K., R. K. Vishnu Prataap, S. Mohan, and S. K. Jha. 2016. Preparation of electro-reduced graphene oxide supported walnut shape nickel nanostructures, and their application to selective detection of dopamine. Microchimica Acta 183 (5):1759–68. doi:10.1007/s00604-016-1806-7.
  • Kendra, L. W., and T. A. Arias. 2012. Joint density functional theory of the electrode-electrolyte interface: Application to fixed electrode potentials, interfacial capacitances, and potentials of zero charge. Physical Review B 86 (7):7–15. doi:10.1103/PhysRevB.86.075140.
  • Karikalan, N., M. Velmurugan, S. M. Chen, and K. Chelladurai. 2016. A copper hexacyanocobaltate nanocubes based dopamine sensor in the presence of ascorbic acid. RSC Advances 6 (54):48523–9. doi:10.1039/C6RA05810H.
  • Lim, B., and Y. Xia. 2011. Metal nanocrystals with highly branched morphologies. Angewandte Chemie (International ed. in English) 50 (1):76–85. doi:10.1002/anie.201002024.
  • Liu, M., X.-Y. Li, J.-J. Li, X.-M. Su, Z.-Y. Wu, P.-F. Li, F.-H. Lei, X.-C. Tan, and Z.-W. Shi. 2015. Synthesis of magnetic molecularly imprinted polymers for the selective separation and determination of metronidazole in cosmetic samples. Analytical and Bioanalytical Chemistry 407 (13):3875–80. doi:10.1007/s00216-015-8592-7.
  • Lu, L. S., L. S. Liang, Y. X. Xie, K. R. Tang, Z. P. Wan, and S. M. Chen. 2018. A nickel nanoparticle/carbon nanotube-modified carbon fiber microelectrode for sensitive insulin detection. Journal of Solid State Electrochemistry 22 (3):825–33. doi:10.1007/s10008-017-3816-8.
  • Lu, W., X. Wang, and D. Han. 2015. Clinical evaluation of Ahmed glaucoma valve implantation for uncontrolled primary congenital glaucoma. Int. Eye Sci 15:890–1.
  • McNamara, P., and R. Durso. 2018. The dopamine system, Parkinsons disease and language function. Behavioral Sciences 21:1–5. doi:10.1016/j.cobeha.2017.10.010.
  • Ma, X., Z. Chao, X. Li, H. Xu, and G. Zhang. 2006. Determination of dopamine by L-cysteine modified electrode in the presence of high concentration of ascorbic acid. Journal of Southern Medical University 26:648–50.
  • Mao, L., J. Jin, L. Song, K. Yamamoto, and L. Jin. 1999. Electrochemical microsensor for in vivo measurements of oxygen based on Nafion and methylviologen modified carbon fiber microelectrode. Electroanalysis 11 (7):499–504. doi:10.1002/(SICI)1521-4109(199906)11:7<499::AID-ELAN499>3.0.CO;2-8.
  • Pal, A., K. Esumi, and T. Pal. 2005. Preparation of nanosized gold particles in a biopolymer using ultraviolet and visible spectrum photoactivation. Journal of Colloid and Interface Science 288 (2):396–401. doi:10.1016/j.jcis.2005.03.048.
  • Park, J., R. A. Wheeler, K. Fontillas, R. B. Keithley, R. M. Carelli, and R. M. Wightman. 2012. Catecholamines in the bed nucleus of the stria terminalis reciprocally respond to reward and aversion. Biological Psychiatry 71 (4):327–34. doi:10.1016/j.biopsych.2011.10.017.
  • Qian, H., Y. Xiao, D. Lepage, L. Chen, and Z. Liu. 2015. Quantum electrostatic model for optical properties of nanoscale gold films. Nanophotonics 4 (4):413–8. doi:10.1515/nanoph-2015-0022.
  • Revin, S. B., and S. A. John. 2012. Highly sensitive determination of uric acid in the presence of major interferents using a conducting polymer film modified electrode. Bioelectrochemistry (Amsterdam, Netherlands) 88:22–9. doi:10.1016/j.bioelechem.2012.05.005.
  • Rivera-Serrano, N., M. Pagan, J. Colón-Rodríguez, C. Fuster, R. Vélez, J. Almodovar-Faria, C. Jiménez-Rivera, and L. Cunci. 2018. Static and dynamic measurement of dopamine adsorption in carbon fiber microelectrodes using electrochemical impedance spectroscopy. Analytical Chemistry 90 (3):2293–301. doi:10.1021/acs.analchem.7b04692.
  • Saha, K., S. S. Agasti, C. Kim, X. Li, and V. M. Rotello. 2012. Gold nanoparticles in chemical and biological sensing. Chemical Reviews 112 (5):2739–79. doi:10.1021/cr2001178.
  • Saha, S., A. Pal, S. Kundu, S. Basu, and T. Pal. 2010. Photochemical green synthesis of calcium-alginate-stabilized Ag and Au nanoparticles and their catalytic application to 4-nitrophenol reduction. Langmuir 26 (4):2885–93. doi:10.1021/la902950x.
  • Sathisha, T. V., B. E. K. Swamy, S. Reddy, B. N. Chandrashekar, and B. Eswarappa. 2012. Clay modified carbon paste electrode for the voltammetric detection of dopamine in presence of ascorbic acid. Journal of Molecular Liquids 172:53–8. doi:10.1016/j.molliq.2012.05.005.
  • Shen, C., Z. Zhang, Y. Guo, and G. Yan. 2016. Construction of fluorescence detection method for dopamine based on CdSe/ZnS quantum dots. Journal of Instrumental Analysis 8:949–54.
  • Shervedani, R. K., M. Bagherzadeh, and S. A. Mozaffari. 2006. Determination of dopamine in the presence of high concentration of ascorbic acid by using gold cysteamine self-assembled monolayers as a nanosensor. Sensors and Actuators B: Chemical 115 (2):614–21. doi:10.1016/j.snb.2005.10.027.
  • Shukl, R. K., A. Sharma, T. Mori, T. Hegmann, and W. Haase. 2016. Effect of two different size chiral ligand-capped gold nanoparticle dopants on the electro-optic and dielectric dynamics of a ferroelectric liquid crystal mixture. Liquid Crystals 43:1–9.
  • Sun, M., D. Z. Li, W. J. Zhang, Z. X. Chen, H. J. Huang, W. J. Li, Y. H. He, and H. Z. Hu. 2009. Photocatalyst Cd2Sb2O6 with high photocatalytic activity toward benzene and dyes. The Journal of Physical Chemistry C 113 (33):14916–21. doi:10.1021/jp9037528.
  • Wang, H., F. You, G. Xia, and M. Zhang. 2007. Determination of dopamine in injections and urine by an enzyme-catalyzed fluorescence quenching method. Analytical Sciences: The International Journal of the Japan Society for Analytical Chemistry 23 (11):1297–300. doi:10.2116/analsci.23.1297.
  • Weng, Q., F. Xia, and W. Jin. 2001. Determination of histamine by capillary zone electrophoresis with end‐column amperometric detection at a carbon fiber microdisk array electrode. Electroanalysis 13 (17):1459–61. doi:10.1002/1521-4109(200111)13:17<1459::AID-ELAN1459>3.0.CO;2-Y.
  • Xiao, W., J. Xiong, S. Zhang, Y. Xiong, H. Zhang, and H. Gao. 2018. Influence of ligands property and particle size of gold nanoparticles on the protein adsorption and corresponding targeting ability. International Journal of Pharmaceutics 538 (1–2):105–11. doi:10.1016/j.ijpharm.2018.01.011.
  • Yang, C., C. B. Jacobs, M. D. Nguyen, M. Ganesana, A. G. Zestos, I. N. Ivanov, A. A. Puretzky, C. M. Rouleau, D. B. Geohegan, and B. J. Venton. 2016. Carbon nanotubes grown on metal microelectrodes for the detection of dopamine. Analytical Chemistry 88 (1):645–60. doi:10.1021/acs.analchem.5b01257.
  • Yang, H. S., T. Z. Peng, and B. E. Shen. 2001. Study on the oxidation process of dopamine on carbon fiber electrode by thin layer spectroelectrochemistry. Journal of Zhejiang University (Science Edition) 28:294–8.
  • Zhang, Y. L., L. Tang, F. Yang, Z. Y. Sun, and G. J. Zhang. 2015. Highly sensitive DNA-based fluorometric mercury(II) bioassay based on graphene oxide and exonuclease III-assisted signal amplification. Microchimica Acta 182 (7–8):1535–41. doi:10.1007/s00604-015-1482-z.
  • Zhang, X., M. Wang, D. Li, L. Liu, J. Ma, J. Gong, X. Yang, X. Xu, and Z. Tong. 2013. Electrochemical investigation of a novel metalloporphyrin intercalated layered niobate modified electrode and its electrocatalysis on ascorbic acid. Journal of Solid State Electrochemistry 17 (12):3177–84. doi:10.1007/s10008-013-2230-0.
  • Zhao, L. Y., D. D. Tong, M. Xue, H. L. Ma, S. Y. Liu, J. Yang, Y. X. Liu, B. Guo, L. Ni, L. Y. Liu, et al. 2017. 2017. MeCP2, a target of miR-638, facilitates gastric cancer cell proliferation through activation of the MEK1/2-ERK1/2 signaling pathway by upregulating GIT1. Oncogenesis 6 (7):e368. doi:10.1038/oncsis.2017.60.
  • Zheng, N., S. Hou, X. Zhou, X. Li, and D. Yuan. 2009. Determination of dopamine by polysulfosalicylic acid/carbon nanotube modified electrode in the presence of ascorbic acid. Chinese Journal of Analytical Laboratory 28:6–10.
  • Zhou, R., D. Fu, D. Yuan, Y. Wu, and K. Qiao. 2016. Preparation, characterization and application of nano-gold. Journal of Sichuan University (Natural Science Edition) 29:14–8.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.