269
Views
20
CrossRef citations to date
0
Altmetric
Infrared

Sweetness Detection and Grading of Peaches and Nectarines by Combining Short- and Long-Wave Fourier-Transform Near-Infrared Spectroscopy

, , , , &
Pages 1125-1144 | Received 18 May 2020, Accepted 07 Jul 2020, Published online: 20 Jul 2020

References

  • Amoriello, T., R. Ciccoritti, and K. Carbone. 2019. Vibrational spectroscopy as a green technology for predicting nutraceutical properties and antiradical potential of early-to-late apricot genotypes. Postharvest Biology and Technology 155:156–66. doi:10.1016/j.postharvbio.2019.03.013.
  • Antonucci, F., F. Pallottino, G. Paglia, A. Palma, S. D’Aquino, and P. Menesatti. 2011. Non-destructive estimation of mandarin maturity status through portable VIS-NIR spectrophotometer. Food and Bioprocess Technology 4 (5):809–13. doi:10.1007/s11947-010-0414-5.
  • Barker, M., and W. Rayens. 2003. Partial least squares for discrimination. Journal of Chemometrics 17 (3):166–73. doi:10.1002/cem.785.
  • Bowker, B., S. Hawkins, and H. Zhuang. 2014. Measurement of water-holding capacity in raw and freeze-dried broiler breast meat with visible and near-infrared spectroscopy. Poultry Science 93 (7):1834–41. doi:10.3382/ps.2013-03651.
  • Cayuela, J. A. 2011. Prediction of intact nectarine quality using a Vis/NIR portable spectrometer. International Journal of Postharvest Technology and Innovation 2 (2):131–44. doi:10.1504/IJPTI.2011.041036.
  • Cortés, V., S. Cubero, N. Aleixos, J. Blasco, and P. Talens. 2017. Sweet and nonsweet taste discrimination of nectarines using visible and near-infrared spectroscopy. Postharvest Biology and Technology 133:113–20. doi:10.1016/j.postharvbio.2017.07.015.
  • De Marchi, M. 2013. On-line prediction of beef quality traits using near infrared spectroscopy. Meat Science 94 (4):455–60. doi:10.1016/j.meatsci.2013.03.003.
  • dos Santos Costa, D., N. F. O. Mesa, M. S. Freire, R. P. Ramos, and B. J. T. Mederos. 2019. Development of predictive models for quality and maturation stage attributes of wine grapes using Vis-NIR reflectance spectroscopy. Postharvest Biology and Technology 150:166–78. doi:10.1016/j.postharvbio.2018.12.010.
  • Fan, S., W. Huang, Z. Guo, B. Zhang, and C. Zhao. 2015. Prediction of soluble solids content and firmness of pears using hyperspectral reflectance imaging. Food Analytical Methods 8 (8):1936–46. doi:10.1007/s12161-014-0079-1.
  • Guo, W., L. Fang, D. Liu, and Z. Wang. 2015. Determination of soluble solids content and firmness of pears during ripening by using dielectric spectroscopy. Computers and Electronics in Agriculture 117:226–33. doi:10.1016/j.compag.2015.08.012.
  • Guo, W., J. Gu, D. Liu, and L. Shang. 2016a. Peach variety identification using near-infrared diffuse reflectance spectroscopy. Computers and Electronics in Agriculture 123:297–303. doi:10.1016/j.compag.2016.03.005.
  • Guo, Z., W. Huang, Y. Peng, Q. Chen, Q. Ouyang, and J. Zhao. 2016b. Color compensation and comparison of shortwave near infrared and long wave near infrared spectroscopy for determination of soluble solids content of ‘Fuji’ apple. Postharvest Biology and Technology 115:81–90. doi:10.1016/j.postharvbio.2015.12.027.
  • He, H. J., D. Wu, and D. W. Sun. 2014. Potential of hyperspectral imaging combined with chemometric analysis for assessing and visualising tenderness distribution in raw farmed salmon fillets. Journal of Food Engineering 126:156–64. doi:10.1016/j.jfoodeng.2013.11.015.
  • Huang, Y., Y. Liu, Y. Yang, Z. Zhang, and K. Chen. 2019. Assessment of tomato color by spatially resolved and conventional Vis/NIR spectroscopy. Spectroscopy and Spectral Analysis 39(11):3585–91. doi: 10.3964/j.issn.1000-0593(2019)11-3585-07.
  • Huang, Y., R. Lu, and K. Chen. 2020. Detection of internal defect of apples by a multichannel Vis/NIR spectroscopic system. Postharvest Biology and Technology 161:111065. doi:10.1016/j.postharvbio.2019.111065.
  • Hui, G., Y. Wu, D. Ye, W. Ding, L. Zhu, and L. Wang. 2012. Study of peach freshness predictive method based on electronic nose. Food Control. 28 (1):25–32.
  • Jiang, H., F. Cheng, and M. Shi. 2020. Rapid identification and visualization of jowl meat adulteration in pork using hyperspectral imaging. Foods 9 (2):154. doi:10.3390/foods9020154.
  • Jiang, H., S. C. Yoon, H. Zhuang, W. Wang, and Y. Yang. 2017. Evaluation of factors in development of Vis/NIR spectroscopy models for discriminating PSE, DFD and normal broiler breast meat. British Poultry Science 58 (6):673–80. doi:10.1080/00071668.2017.1364350.
  • Jie, D., L. Xie, X. Fu, X. Rao, and Y. Ying. 2013. Variable selection for partial least squares analysis of soluble solids content in watermelon using near-infrared diffuse transmission technique. Journal of Food Engineering 118 (4):387–92. doi:10.1016/j.jfoodeng.2013.04.027.
  • Keithley, R. B., R. M. Wightman, and M. L. Heien. 2009. Multivariate concentration determination using principal component regression with residual analysis. Trends in Analytical Chemistry 28 (9):1127–36. doi:10.1016/j.trac.2009.07.002.
  • Li, H., Y. Liang, Q. Xu, and D. Cao. 2009. Key wavelengths screening using competitive adaptive reweighted sampling method for multivariate calibration. Analytica Chimica Acta 648 (1):77–84. doi:10.1016/j.aca.2009.06.046.
  • Li, X., J. Huang, Y. Xiong, J. Zhou, X. Tan, and B. Zhang. 2018. Determination of soluble solid content in multi-origin ‘Fuji’ apples by using FT-NIR spectroscopy and an origin discriminant strategy. Computers and Electronics in Agriculture 155:23–31. doi:10.1016/j.compag.2018.10.003.
  • Mahesh, S., D. S. Jayas, J. Paliwal, and N. D. G. White. 2015. Comparison of partial least squares regression (PLSR) and principal components regression (PCR) methods for protein and hardness predictions using the near-infrared (NIR) hyperspectral images of bulk samples of Canadian wheat. Food and Bioprocess Technology 8 (1):31–40. doi:10.1007/s11947-014-1381-z.
  • Menesatti, P., A. Zanella, S. D’Andrea, C. Costa, G. Paglia, and F. Pallottino. 2009. Supervised multivariate analysis of hyper-spectral NIR images to evaluate the starch index of apples. Food and Bioprocess Technology 2 (3):308–14. doi:10.1007/s11947-008-0120-8.
  • Nascimento, P. A. M., L. C. de Carvalho, L. C. C. Júnior, F. M. V. Pereira, and G. H. de Almeida Teixeira. 2016. Robust PLS models for soluble solids content and firmness determination in low chilling peach using near-infrared spectroscopy (NIR). Postharvest Biology and Technology 111:345–51. doi:10.1016/j.postharvbio.2015.08.006.
  • Nikbakht, A. M., T. Tavakkoli Hashjin, R. Malekfar, and B. Gobadian. 2011. Nondestructive determination of tomato fruit quality parameters using Raman spectroscopy. Journal of Agricultural Science and Technology 13 (4):517–26.
  • Noda, I. 1993. Generalized two-dimensional correlation method applicable to infrared, Raman, and other types of spectroscopy. Applied Spectroscopy 47 (9):1329–36. doi:10.1366/0003702934067694.
  • Park, E., Y. Luo, S. C. Marine, K. L. Everts, S. A. Micallef, S. Bolten, and J. Stommel. 2018. Consumer preference and physicochemical evaluation of organically grown melons. Postharvest Biology and Technology 141:77–85. doi:10.1016/j.postharvbio.2018.03.001.
  • Paz, P., M. T. Sánchez, D. Pérez-Marín, J. E. Guerrero, and A. Garrido-Varo. 2008. Nondestructive determination of total soluble solid content and firmness in plums using near-infrared reflectance spectroscopy. Journal of Agricultural and Food Chemistry 56 (8):2565–70. doi:10.1021/jf073369h.
  • Rajkumar, P., N. Wang, G. EImasry, G. S. V. Raghavan, and Y. Gariepy. 2012. Studies on banana fruit quality and maturity stages using hyperspectral imaging. Journal of Food Engineering 108 (1):194–200. doi:10.1016/j.jfoodeng.2011.05.002.
  • Schmutzler, M., and C. W. Huck. 2014. Automatic sample rotation for simultaneous determination of geographical origin and quality characteristics of apples based on near infrared spectroscopy (NIRS). Vibrational Spectroscopy 72:97–104. doi:10.1016/j.vibspec.2014.02.010.
  • Shao, Y., Y. Bao, and Y. He. 2011. Visible/near-infrared spectra for linear and nonlinear calibrations: A case to predict soluble solids contents and pH value in peach. Food and Bioprocess Technology 4 (8):1376–83. doi:10.1007/s11947-009-0227-6.
  • Tavakolian, M. S., F. A. Silaghi, A. Fabbri, G. Molari, A. Giunchi, and A. Guarnieri. 2013. Differentiation of post harvest date fruit varieties non-destructively using FT-NIR spectroscopy. International Journal of Food Science & Technology 48 (6):1282–8. doi:10.1111/ijfs.12088.
  • Wang, A., and L. Xie. 2014. Technology using near infrared spectroscopic and multivariate analysis to determine the soluble solids content of citrus fruit. Journal of Food Engineering 143 (6):17–24. doi:10.1016/j.jfoodeng.2014.06.023.
  • Ying, Y. B., Y. D. Liu, J. P. Wang, X. P. Fu, and Y. B. Li. 2005. Fourier transform near-infrared determination of total soluble solids and available acid in intact peaches. Transactions of the ASABE 48 (1):229–34. doi:10.13031/2013.17922.
  • You, Z., L. Zhuo, X. Yang, H. Hong, Z. Liu, Z. Gong, and F. Cheng. 2015. Food research applications of two-dimensional correlation spectroscopy. Applied Spectroscopy Reviews 50 (10):840–58. doi:10.1080/05704928.2015.1087402.
  • Zhang, B., J. Li, S. Fan, W. Huang, C. Zhao, C. Liu, and D. Huang. 2015. Hyperspectral imaging combined with multivariate analysis and band math for detection of common defects on peaches (Prunus persica). Computers and Electronics in Agriculture 114:14–24. doi:10.1016/j.compag.2015.03.015.
  • Zhang, C., H. Jiang, F. Liu, and Y. He. 2017. Application of near-infrared hyperspectral imaging with variable selection methods to determine and visualize caffeine content of coffee beans. Food and Bioprocess Technology 10 (1):213–21. doi:10.1007/s11947-016-1809-8.
  • Zhang, L., and M. J. Mccarthy. 2013. Assessment of pomegranate postharvest quality using nuclear magnetic resonance. Postharvest Biology and Technology 77 (2):59–66. doi:10.1016/j.postharvbio.2012.11.006.
  • Zhu, X., L. Fang, J. Gu, and W. Guo. 2016. Feasibility investigation on determining soluble solids content of peaches using dielectric spectra. Food Analytical Methods 9 (6):1789–98. doi:10.1007/s12161-015-0348-7.
  • Zhu, X., S. Li, Y. Shan, Z. Zhang, G. Li, D. Su, and F. Liu. 2010. Detection of adulterants such as sweeteners materials in honey using near-infrared spectroscopy and chemometrics. Journal of Food Engineering 101 (1):92–7. doi:10.1016/j.jfoodeng.2010.06.014.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.