268
Views
7
CrossRef citations to date
0
Altmetric
Voltammetry

Low-Cost Electrochemical Determination of Acrylamide in Processed Food Using a Hemoglobin – Iron Magnetic Nanoparticle – Chitosan Modified Carbon Paste Electrode

, , , , & ORCID Icon
Pages 1180-1192 | Received 06 May 2020, Accepted 10 Jul 2020, Published online: 23 Jul 2020

References

  • Al Zoubi, W., M. P. Kamil, S. Fatimah, N. Nashrah, and Y. G. Ko. 2020. Recent advances in hybrid organic-inorganic materials with spatial architecture for state-of-the-art applications. Progress in Materials Science 112:100663. doi:10.1016/j.pmatsci.2020.100663.
  • Arisseto, A. P., M. C. Toledo, Y. Govaert, J. Van Loco, S. Fraselle, E. Weverbergh, and J. M. Degroodt. 2007. Determination of acrylamide levels in selected foods in Brazil. Food Additives and Contaminants 24 (3):236–41. doi:10.1080/02652030601053170.
  • Asnaashari, M., R. E. Kenari, R. Farahmandfar, K. Abnous, and S. M. Taghdisi. 2019. An electrochemical biosensor based on hemoglobin-oligonucleotides-modified electrode for detection of acrylamide in potato fries. Food Chemistry 271:54–61. doi:10.1016/j.foodchem.2018.07.150.
  • Ayvaz, H., and L. E. Rodriguez-Saona. 2015. Application of handheld and portable spectrometers for screening acrylamide content in commercial potato chips. Food Chemistry 174:154–62. doi:10.1016/j.foodchem.2014.11.001.
  • Batra, B., S. Lata, and C. S. Pundir. 2013. Construction of an improved amperometric acrylamide biosensor based on hemoglobin immobilized onto carboxylated multi-walled carbon nanotubes/iron oxide nanoparticles/chitosan composite film. Bioprocess and Biosystems Engineering 36 (11):1591–9. doi:10.1007/s00449-013-0931-5.
  • Batra, B., S. Lata, M. Sharma, and C. S. Pundir. 2013. An acrylamide biosensor based on immobilization of hemoglobin onto multiwalled carbon nanotube/copper nanoparticles/polyaniline hybrid film. Analytical Biochemistry 433 (2):210–7. doi:10.1016/j.ab.2012.10.026.
  • Bergmark, E., C. J. Calleman, F. S. He, and L. G. Costa. 1993. Determination of hemoglobin adducts in humans occupationally exposed to acrylamide. Toxicology and Applied Pharmacology 120 (1):45–54. doi:10.1006/taap.1993.1085.
  • Claeys, W., B. De Meulenaer, A. Huyghebaert, M. L. Scippo, P. Hoet, and C. Matthys. 2016. Reassessment of the acrylamide risk: Belgium as a case-study. Food Control 59:628–35. doi:10.1016/j.foodcont.2015.06.051.
  • Devi, R., S. Yadav, R. Nehra, S. Yadav, and C. S. Pundir. 2013. Electrochemical biosensor based on gold coated iron nanoparticles/chitosan composite bound xanthine oxidase for detection of xanthine in fish meat. Journal of Food Engineering 115 (2):207–14. doi:10.1016/j.jfoodeng.2012.10.014.
  • Ding, L., A. M. Bond, J. Zhai, and J. Zhang. 2013. Utilization of nanoparticle labels for signal amplification in ultrasensitive electrochemical affinity biosensors: A review. Analytica Chimica Acta 797:1–12. doi:10.1016/j.aca.2013.07.035.
  • Friedman, M. 2003. Chemistry, biochemistry, and safety of acrylamide. A review. Journal of Agricultural and Food Chemistry 51 (16):4504–26. doi:10.1021/jf030204+.
  • Garabagiu, S., and G. Mihailescu. 2011. Simple hemoglobin-gold nanoparticles modified electrode for the amperometric detection of acrylamide. Journal of Electroanalytical Chemistry 659 (2):196–200. doi:10.1016/j.jelechem.2011.06.003.
  • Ghiasvand, A. R., and S. Hajipour. 2016. Direct determination of acrylamide in potato chips by using headspace solid-phase microextraction coupled with gas chromatography-flame ionization detection. Talanta 146:417–22. doi:10.1016/j.talanta.2015.09.004.
  • Gökmen, V., and T. K. Palazoğlu. 2008. Acrylamide formation in foods during thermal processing with a focus on frying. Food and Bioprocess Technology 1 (1):35–42. doi:10.1007/s11947-007-0005-2.
  • Halford, N. G., T. Y. Curtis, N. Muttucumaru, J. Postles, J. S. Elmore, and D. S. Mottram. 2012. The acrylamide problem: A plant and agronomic science issue. Journal of Experimental Botany 63 (8):2841–51. doi:10.1093/jxb/ers011.
  • Huang, S., S. Lu, C. Huang, J. Sheng, L. Zhang, W. Su, and Q. Xiao. 2016. An electrochemical biosensor based on single-stranded DNA modified gold electrode for acrylamide determination. Sensors and Actuators B: Chemical 224:22–30. doi:10.1016/j.snb.2015.10.008.
  • Li, N., X. Liu, J. Zhu, B. Zhou, J. Jing, A. Wang, R. Xu, Z. Wen, X. Shi, and S. Guo. 2020. Simple and sensitive detection of acrylamide based on hemoglobin immobilization in carbon ionic liquid paste electrode. Food Control 109:106764. doi:10.1016/j.foodcont.2019.106764.
  • Lu, A.-H., E. L. Salabas, and F. Schüth. 2007. Magnetic nanoparticles: Synthesis, protection, functionalization, and application. Angewandte Chemie International Edition 46 (8):1222–44. doi:10.1002/anie.200602866.
  • Michalak, J., E. Gujska, and J. Klepacka. 2011. The effect of domestic preparation of some potato products on acrylamide content. Plant Foods for Human Nutrition 66 (4):307–12. doi:10.1007/s11130-011-0252-2.
  • Mottram, D. S., B. L. Wedzicha, and A. T. Dodson. 2002. Food chemistry: Acrylamide is formed in the Maillard reaction. Nature 419 (6906):448–9. doi:10.1038/419448a.
  • Omar, M. M. A., A. A. Elbashir, and O. J. Schmitz. 2015. Determination of acrylamide in Sudanese food by high performance liquid chromatography coupled with LTQ Orbitrap mass spectrometry. Food Chemistry 176:342–9. doi:10.1016/j.foodchem.2014.12.091.
  • Oracz, J., E. Nebesny, and D. Zyżelewicz. 2011. New trends in quantification of acrylamide in food products. Talanta 86:23–34. doi:10.1016/j.talanta.2011.08.066.
  • Pundir, C. S., N. Yadav, and A. K. Chhillar. 2019. Occurrence, synthesis, toxicity and detection methods for acrylamide determination in processed foods with special reference to biosensors: A review. Trends in Food Science & Technology 85:211–25. doi:10.1016/j.tifs.2019.01.003.
  • Russo, M. V., P. Avino, A. Centola, I. Notardonato, and G. Cinelli. 2014. Rapid and simple determination of acrylamide in conventional cereal-based foods and potato chips through conversion to 3-[bis(trifluoroethanoyl)amino]-3-oxopropyl trifluoroacetate by gas chromatography coupled with electron capture and ion trap mass spectrometry detectors. Food Chemistry 146:204–11. doi:10.1016/j.foodchem.2013.09.050.
  • Schettgen, T., B. Rossbach, B. Kütting, S. Letzel, H. Drexler, and J. Angerer. 2004. Determination of haemoglobin adducts of acrylamide and glycidamide in smoking and non-smoking persons of the general population. International Journal of Hygiene and Environmental Health 207 (6):531–9. doi:10.1078/1438-4639-00324.
  • Stobiecka, A., H. Radecka, and J. Radecki. 2007. Novel voltammetric biosensor for determining acrylamide in food samples. Biosensors & Bioelectronics 22 (9-10):2165–70. doi:10.1016/j.bios.2006.10.008.
  • Tareke, E., P. Rydberg, P. Karlsson, S. Eriksson, and M. Törnqvist. 2002. Analysis of acrylamide, a carcinogen formed in heated foodstuffs. Journal of Agricultural and Food Chemistry 50 (17):4998–5006. doi:10.1021/jf020302f.
  • Taubert, D., S. Harlfinger, L. Henkes, R. Berkels, and E. Schömig. 2004. Influence of processing parameters on acrylamide formation during frying of potatoes. Journal of Agricultural and Food Chemistry 52 (9):2735–9. doi:10.1021/jf035417d.
  • Törnqvist, M., C. Fred, J. Haglund, H. Helleberg, B. Paulsson, and P. Rydberg. 2002. Protein adducts: Quantitative and qualitative aspects of their formation, analysis and applications. Journal of Chromatography B 778 (1-2):279–308. doi:10.1016/S1570-0232(02)00172-1.
  • Varmira, K., O. Abdi, M.-B. Gholivand, H. C. Goicoechea, and A. R. Jalalvand. 2018. Intellectual modifying a bare glassy carbon electrode to fabricate a novel and ultrasensitive electrochemical biosensor: Application to determination of acrylamide in food samples. Talanta 176:509–17. doi:10.1016/j.talanta.2017.08.069.
  • Yadav, N., A. K. Chhillar, and C. S. Pundir. 2018. Preparation, characterization and application of haemoglobin nanoparticles for detection of acrylamide in processed foods. International Journal of Biological Macromolecules 107 (Pt A):1000–13. doi:10.1016/j.ijbiomac.2017.09.070.
  • Zhang, W., and G. Li. 2004. Third-generation biosensors based on the direct electron transfer of proteins. Analytical Sciences 20 (4):603–9. doi:10.2116/analsci.20.603.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.