197
Views
4
CrossRef citations to date
0
Altmetric
Atomic Spectroscopy

Comparative Study of the Emission Enhancement Due to Target Heating and Laser Energy on the Laser-Produced Copper-Zinc Alloy Plasma

, , &
Pages 1269-1283 | Received 22 Jun 2020, Accepted 19 Jul 2020, Published online: 30 Jul 2020

References

  • Ahmed, R., M. Akthar, A. Jabbar, Z. A. Umar, N. Ahmed, J. Iqbal, and M. A. Baig. 2019. Signal intensity enhancement by cavity confinement of laser-produced plasma. IEEE Transactions on Plasma Science 47 (3):1616–20. doi: 10.1109/TPS.2019.2896925.
  • Ahmed, R., A. Jabbar, M. Akhtar, Z. A. Umar, and M. A. Baig. 2020. Amelioration in the detection of chlorine using electric field assisted LIBS. Plasma Chemistry and Plasma Processing 40 (4):809–18. doi: 10.1007/s11090-020-10072-4.
  • Ahmed, R., Z. A. Umar, and M. A. Baig. 2019. Emission intensity enhancement by re-ionization of Nd: YAG laser-produced plasma using a nitrogen laser. Laser Physics 29 (5):055701. doi: 10.1088/1555-6611/ab05d0.
  • Akhtar, M., A. Jabbar, N. Ahmed, S. Mahmood, Z. A. Umar, R. Ahmed, and M. A. Baig. 2019. Analysis of lead and copper in soil samples by laser-induced breakdown spectroscopy under an external magnetic field. Applied Physics B 125 (6):110. doi: 10.1007/s00340-019-7225-9.
  • Al-Shboul, K. F., S. S. Harilal, S. M. Hassan, A. Hassanein, J. T. Costello, T. Yabuuchi, K. A. Tanaka, and Y. Hirooka. 2014. Interpenetration, and stagnation in colliding laser plasmas. Physics of Plasmas 21 (1):013502. doi: 10.1063/1.4859136.
  • Bol'shakov, A. A., X. Mao, and R. E. Russo. 2017. Spectral emission enhancement by an electric pulse for LIBS and LAMIS. Journal of Analytical Atomic Spectrometry 32 (3):657–70. doi: 10.1039/C6JA00436A.
  • Cai, B. Y., X. Mao, H. Hou, V. Zorba, R. E. Russo, and N.-H. Cheung. 2015. Double-pulse laser ablation sampling: Enhancement of analyte emission by a second laser pulse at 213 nm. Spectrochimica Acta Part B: Atomic Spectroscopy 110:51–5. doi: 10.1016/j.sab.2015.05.010.
  • Cheng, L., G. Xun, L. Qi, S. Chao, and L. Jingquan. 2015. Spectral enhancement of laser-induced breakdown spectroscopy in external magnetic field. Plasma Science and Technology 17:919–22. doi: 10.1088/1009-0630/17/11/05.
  • Cremers, D. A., and L. J. Radziemski. 2013. Handbook of laser induced breakdown spectroscopy. 2nd ed. Hoboken, NJ: Wiley. doi: 10.1002/0470093013.
  • Darbani, S. M. R., M. Ghezelbash, A. E. Majd, M. Soltanolkotabi, and H. Saghafifar. 2014. Temperature effect on the optical emission intensity in laser-induced breakdown spectroscopy of superalloys. Journal of the European Optical Society - Rapid Publications 9:14058. doi: 10.2971/jeos.2014.14058.
  • De Giacomo, A., M. Dell’Aglio, D. Bruno, R. Gaudiuso, and O. De Pascale. 2008. Experimental and theoretical comparison of single-pulse and double-pulse laser-induced breakdown spectroscopy on metallic samples. Spectrochimica Acta Part B: Atomic Spectroscopy 63 (7):805–16. doi: 10.1016/j.sab.2008.05.002.
  • Eland, K. L., D. N. Stratis, D. M. Gold, S. R. Goode, and S. M. Angel. 2001. Energy dependence of emission intensity and temperature in a LIBS plasma using femtosecond excitation. Applied Spectroscopy 55 (3):286–91. doi: 10.1366/0003702011951902.
  • Fu, Y., Z. Hou, and Z. Wang. 2016. Physical insights of cavity confinement enhancing effect in laser-induced breakdown spectroscopy. Optics Express 24 (3):3055–66. doi: 10.1364/OE.24.003055.
  • Goueguel, C., S. Laville, F. Vidal, M. Sabsabi, and M. Chaker. 2010. Investigation of resonance-enhanced laser-induced breakdown spectroscopy for analysis of aluminum alloys. Journal of Analytical Atomic Spectrometry 25 (5):635–44. doi: 10.1039/b927013b.
  • Griem, H. R. 1997. Principles of plasma spectroscopy. Cambridge: Cambridge University Press. doi: 10.1017/CBO9780511524578.
  • Guo, K., A. Chen, W. Xu, D. Zhang, and M. Jin. 2019. Effect of sample temperature on time-resolved laser-induced breakdown spectroscopy. AIP Advances 9 (6):065214. doi: 10.1063/1.5097301.
  • Guo, L. B., C. M. Li, W. Hu, Y. S. Zhou, B. Y. Zhang, Z. X. Cai, X. Y. Zeng, and Y. F. Lu. 2011. Plasma confinement by a hemispherical cavity in laser-induced breakdown spectroscopy. Applied Physics Letters 98 (13):131501. doi: 10.1063/1.3573807.
  • Hai, R., Z. He, D. Wu, W. Tong, H. Sattar, M. Imran, and H. Ding. 2019. Influence of sample temperature on the laser-induced breakdown spectroscopy of molybdenum–tungsten alloy. Journal of Analytical Atomic Spectrometry 34 (12):2378–84. doi: 10.1039/C9JA00261H.
  • Hontzopoulos, E., D. Charalambidis, C. Fotakis, G. Farkas, Z. G. Horvath, and C. Toth. 1988. Enhancement of ultraviolet laser-plasma emission produced in a strong static electric field. Optics Communications 67 (2):124–8. doi: 10.1016/0030-4018(88)90317-3.
  • Jabbar, A., M. Akhtar, S. Mehmood, N. Ahmed, Z. A. Umar, R. Ahmed, and M. A. Baig. 2019. On the detection of heavy elements in the Euphorbia indica plant using laser-induced breakdown spectroscopy and laser ablation time of flight mass spectrometry. Journal of Analytical Atomic Spectrometry 34 (5):954–62. doi: 10.1039/C9JA00053D.
  • Koral, C., M. Dell'Aglio, R. Gaudiuso, R. Alrifai, M. Torelli, and A. De Giacomo. 2018. Nanoparticle-enhanced laser induced breakdown spectroscopy for the noninvasive analysis of transparent samples and gemstones. Talanta 182:253–8. doi: 10.1016/j.talanta.2018.02.001.
  • Lan, H., X. B. Wang, H. Chen, D. L. Zuo, and P. X. Lu. 2015. Influence of a magnetic field on laser-produced Sn plasma. Plasma Sources Science and Technology 24 (5):055012. doi: 10.1088/0963-0252/24/5/055012.
  • Lednev, V. N., M. Y. Grishin, P. A. Sdvizhenskii, R. D. Asyutin, R. S. Tretyakov, A. Y. Stavertiy, and S. M. Pershin. 2019. Sample temperature effect on laser ablation and analytical capabilities of laser-induced breakdown spectroscopy. Journal of Analytical Atomic Spectrometry 34 (3):607–15. doi: 10.1039/C8JA00348C.
  • Lui, S. L., and N. H. Cheung. 2005. Minimally destructive analysis of aluminum alloys by resonance-enhanced laser-induced plasma spectroscopy. Analytical Chemistry 77 (8):2617–23. doi: 10.1021/ac0481809.
  • McWhirter, R. W. P. 1965. Plasma diagnostic techniques. New York: Academic Press.
  • Nassef, O. A., and H. E. Elsayed-Ali. 2005. Spark discharge assisted laser-induced breakdown spectroscopy. Spectrochimica Acta Part B: Atomic Spectroscopy 60 (12):1564–72. doi: 10.1016/j.sab.2005.10.010.
  • Nicolodelli, G., P. R. Villas-Boas, C. R. Menegatti, G. S. Senesi, D. V. Magalhaes, D. D. Souza, D. M. B. P. Milori, and B. S. Marangoni. 2018. Determination of Pb in soils by double-pulse laser-induced breakdown spectroscopy assisted by continuum wave-diode laser-induced fluorescence. Applied Optics 57 (28):8366–72. doi: 10.1364/AO.57.008366.
  • NIST database. 2020. http://physics.nist.gov/PhysRefData/ASD/lines_form.html.
  • Noll, R. 2012. Laser-induced breakdown spectroscopy - fundamentals and applications. Heidelberg: Springer. ISBN 978-3-642-20668-9.
  • Palanco, S., L. M. Cabalín, D. Romero, and J. J. Laserna. 1999. Infrared laser ablation and atomic emission spectrometry of stainless steel at high temperatures. Journal of Analytical Atomic Spectrometry. 14 (12):1883–7. doi: 10.1039/A905472C.
  • Rashid, B., R. Ahmed, R. Ali, and M. A. Baig. 2011. A comparative study of a single and double pulse of laser-induced breakdown spectroscopy of silver. Physics of Plasmas 18 (7):073301. doi: 10.1063/1.3599591.
  • Robledo-Martinez, A., H. Sobral, and H. Garcia-Villarreal. 2018. Effect of applied voltage and inter-pulse delay in spark-assisted LIBS. Spectrochimica Acta Part B: Atomic Spectroscopy 144:7–14. doi: 10.1016/j.sab.2018.03.002.
  • Sanginés, R., H. Sobral, and E. Alvarez-Zauco. 2012. Emission enhancement in laser-produced plasmas on preheated targets. Applied Physics B 108 (4):867–73. doi: 10.1007/s00340-012-5130-6.
  • Shaikh, N. M., B. Rashid, S. Hafeez, Y. Jamil, and M. A. Baig. 2006. Measurement of electron density and temperature of a laser-induced zinc plasma. Journal of Physics D: Applied Physics 39 (7):1384–91. doi: 10.1088/0022-3727/39/7/008.
  • St-Onge, L., M. Sabsabi, and P. Cielo. 1998. Analysis of solids using laser-induced plasma spectroscopy in double-pulse mode. Spectrochimica Acta Part B: Atomic Spectroscopy 53 (3):407–15. doi: 10.1016/S0584-8547(98)00080-9.
  • Tavassoli, S. H., and A. Gragossian. 2009. Effect of sample temperature on laser-induced breakdown spectroscopy. Optics & Laser Technology 41 (4):481–5. doi: 10.1016/j.optlastec.2008.07.010.
  • Ujihara, K. 1972. Reflectivity of metals at high temperatures. Journal of Applied Physics 43 (5):2376–83. doi: 10.1063/1.1661506.
  • Wang, Y., A. Chen, Y. Jiang, L. Sui, X. Wang, D. Zhang, D. Tian, S. Li, and M. Jin. 2017. Temperature effect on femtosecond laser-induced breakdown spectroscopy of glass sample. Physics of Plasmas 24 (1):013301. doi: 10.1063/1.4973658.
  • Yi, R., J. Li, X. Yang, R. Zhou, H. Yu, Z. Hao, L. Guo, X. Li, X. Zeng, and Y. Lu. 2017. Spectral interference elimination in soil analysis using laser-induced breakdown spectroscopy assisted by laser-induced fluorescence. Analytical Chemistry 89 (4):2334–7. doi: 10.1021/acs.analchem.6b03969.
  • Zmerli, B., N. B. Nessib, M. S. Dimitrijevic, and S. Sahal Bréchot. 2010. Stark broadening calculations of neutral copper spectral lines and temperature dependence. Physica Scripta 82 (5):055301. doi: 10.1088/0031-8949/82/05/055301.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.