163
Views
4
CrossRef citations to date
0
Altmetric
Atomic Spectroscopy

Determination of Iron in Licorice Samples by Slotted Quartz Tube Flame Atomic Absorption Spectrometry (FAAS) with Matrix Matching Calibration Strategy after Complexation with Schiff Base Ligand-Based Dispersive Liquid–Liquid Microextraction

&
Pages 1284-1294 | Received 07 Jun 2020, Accepted 22 Jul 2020, Published online: 06 Aug 2020

References

  • Abdel-Azeem, S. M., N. R. Bader, H. M. Kuss, and M. F. El-Shahat. 2013. Determination of total iron in food samples after flow injection preconcentration on polyurethane foam functionalized with N,N-bis(salicylidene)-1,3-propanediamine. Food Chemistry 138 (2–3):1641–7. doi:10.1016/j.foodchem.2012.11.054.
  • Abduljabbar, T. N., B. L. Sharp, H. J. Reid, N. Barzegar-Befroeid, T. Peto, and I. Lengyel. 2019. Determination of Zn, Cu and Fe in human patients’ serum using micro-sampling ICP-MS and sample dilution. Talanta 204:663–9. doi:10.1016/j.talanta.2019.05.098.
  • Akkaya, E., D. S. Chormey, and S. Bakırdere. 2017. Sensitive determination of cadmium using solidified floating organic drop microextraction-slotted quartz tube-flame atomic absorption spectroscopy. Environmental Monitoring and Assessment 189 (10):513. doi:10.1007/s10661-017-6232-8.
  • Arain, M. B., E. Yilmaz, and M. Soylak. 2016. Deep eutectic solvent based ultrasonic assisted liquid phase microextraction for the FAAS determination of cobalt. Journal of Molecular Liquids 224:538–43. doi:10.1016/j.molliq.2016.10.005.
  • Borzoei, M., M. A. Zanjanchi, H. Sadeghi-Aliabadi, and L. Saghaie. 2018. Optimization of a methodology for determination of iron concentration in aqueous samples using a newly synthesized chelating agent in dispersive liquid-liquid microextraction. Food Chemistry 264:9–15. doi:10.1016/j.foodchem.2018.04.135.
  • Bulgurcuoğlu, A. E., B. Yılmaz, D. S. Chormey, and S. Bakırdere. 2018. Simultaneous determination of estrone and selected pesticides in water medium by GC-MS after multivariate optimization of microextraction strategy. Environmental Monitoring and Assessment 190 (4):252. doi:10.1007/s10661-018-6625-3.
  • Çelik, B., E. Akkaya, S. Bakirdere, and F. Aydin. 2018. Determination of indium using vortex assisted solid phase microextraction based on oleic acid coated magnetic nanoparticles combined with slotted quartz tube-flame atomic absorption spectrometry. Microchemical Journal 141:7–11. doi:10.1016/j.microc.2018.04.031.
  • Chormey, D. S., E. Öztürk Er, S. Erarpat, G. Özzeybek, B. Arı, and S. Bakirdere. 2018. A novel analytical approach for the determination of parathion methyl in water: Quadrupole isotope dilution mass spectrometry-dispersive liquid-liquid microextraction using multivariate optimization. The Analyst 143 (5):1141–6. doi:10.1039/c7an02014g.
  • de Oliveira e Silva, A. F., W. V. de Castro, and F. P. de Andrade. 2018. Development of spectrophotometric method for iron determination in fortified wheat and maize flours. Food Chemistry 242:205–10. doi:10.1016/j.foodchem.2017.08.110.
  • de Oliveira Souza, M., M. A. Ribeiro, M. T. W. D. Carneiro, G. P. B. Athayde, E. V. R. de Castro, F. L. F. da Silva, W. O. Matos, and R. de Queiroz Ferreira. 2015. Evaluation and determination of chloride in crude oil based on the counterions Na, Ca, Mg, Sr and Fe, quantified via ICP-OES in the crude oil aqueous extract. Fuel 154:181–7. doi:10.1016/j.fuel.2015.03.079.
  • Erarpat, S., G. Özzeybek, D. S. Chormey, and S. Bakırdere. 2017. Determination of lead at trace levels in mussel and sea water samples using vortex assisted dispersive liquid-liquid microextraction-slotted quartz tube-flame atomic absorption spectrometry. Chemosphere 189:180–5. doi:10.1016/j.chemosphere.2017.09.072.
  • Feist, B., and R. Sitko. 2018. Method for the determination of Pb, Cd, Zn, Mn and Fe in rice samples using carbon nanotubes and cationic complexes of batophenanthroline. Food Chemistry 249:38–44. doi:10.1016/j.foodchem.2017.12.082.
  • Fındıkoğlu, M. S., M. Fırat, D. S. Chormey, F. Turak, Ç. Şahin, and S. Bakırdere. 2018. Determination of cadmium in tap, sea and waste water samples by vortex-assisted dispersive liquid-liquid-solidified floating organic drop microextraction and slotted quartz tube FAAS after complexation with a imidazole based ligand. Water, Air, and Soil Pollution 229 (2):37. 10.1007/s11270-018-3689-1.
  • Fırat, M., S. Bakırdere, M. S. Fındıkoğlu, E. B. Kafa, E. Yazıcı, M. Yolcu, Ç. Büyükpınar, D. S. Chormey, S. Sel, and F. Turak. 2017. Determination of trace amount of cadmium using dispersive liquid-liquid microextraction-slotted quartz tube-flame atomic absorption spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy 129:37–41. doi:10.1016/j.sab.2017.01.006.
  • Gondim, T. A., J. A. C. Guedes, L. P. D. Ribeiro, G. S. Lopes, and W. O. Matos. 2017. Optimization of a cloud point extraction procedure with response surface methodology for the quantification of dissolved iron in produced water from the petroleum industry using FAAS. Marine Pollution Bulletin 114 (2):786–91. doi:10.1016/j.marpolbul.2016.10.068.
  • Kafa, E. B., M. Fırat, D. S. Chormey, F. Turak, and S. Bakırdere. 2018. Sensitive determination of cadmium in lake water, municipal wastewater and onion samples by slotted quartz tube-flame atomic absorption spectrometry after preconcentration with microextraction strategy. Measurement 125:219–23. doi:10.1016/j.measurement.2018.04.068.
  • Liang, P., E. Zhao, and F. Li. 2009. Dispersive liquid-liquid microextraction preconcentration of palladium in water samples and determination by graphite furnace atomic absorption spectrometry. Talanta 77 (5):1854–7. doi:10.1016/j.talanta.2008.10.033.
  • Liu, X., and J.-R. Hamon. 2019. Recent developments in penta-, hexa- and heptadentate Schiff base ligands and their metal complexes. Coordination Chemistry Reviews 389:94–118. doi:10.1016/j.ccr.2019.03.010.
  • Mitreva, M., I. Dakova, and I. Karadjova. 2017. Iron(II) ion imprinted polymer for Fe(II)/Fe(III) speciation in wine. Microchemical Journal 132:238–44. doi:10.1016/j.microc.2017.01.023.
  • Moghadam, M. R., A. M. H. Shabani, and S. Dadfarnia. 2011. Spectrophotometric determination of iron species using a combination of artificial neural networks and dispersive liquid-liquid microextraction based on solidification of floating organic drop. Journal of Hazardous Materials 197:176–82. doi:10.1016/j.jhazmat.2011.09.073.
  • Peng, B., G. Chen, K. Li, M. Zhou, J. Zhang, and S. Zhao. 2017. Dispersive liquid-liquid microextraction coupled with digital image colorimetric analysis for detection of total iron in water and food samples. Food Chemistry 230:667–72. doi:10.1016/j.foodchem.2017.03.099.
  • Peng, B., Y. Shen, Z. Gao, M. Zhou, Y. Ma, and S. Zhao. 2015. Determination of total iron in water and foods by dispersive liquid-liquid microextraction coupled with microvolume UV-vis spectrophotometry. Food Chemistry 176:288–93. doi:10.1016/j.foodchem.2014.12.084.
  • Rezaee, M., Y. Assadi, M.-R. M. Hosseini, E. Aghaee, F. Ahmadi, and S. Berijani. 2006. Determination of organic compounds in water using dispersive liquid-liquid microextraction. Journal of Chromatography A 1116 (1–2):1–9. doi:10.1016/j.chroma.2006.03.007.
  • Şahin, Ç. A., I. Tokgöz, and S. Bektaş. 2010. Preconcentration and determination of iron and copper in spice samples by cloud point extraction and flow injection flame atomic absorption spectrometry. Journal of Hazardous Materials 181 (1–3):359–65. doi:10.1016/j.jhazmat.2010.05.018.
  • Sixto, A., A. Mollo, and M. Knochen. 2019. Fast and simple method using DLLME and FAAS for the determination of trace cadmium in honey. Journal of Food Composition and Analysis 82:103229. doi:10.1016/j.jfca.2019.06.001.
  • Tabrizi, A. B. 2010. Development of a dispersive liquid-liquid microextraction method for iron speciation and determination in different water samples. Journal of Hazardous Materials 183 (1–3):688–93. doi:10.1016/j.jhazmat.2010.07.080.
  • Tekin, Z., S. Erarpat, A. Şahin, D. Selali Chormey, and S. Bakırdere. 2019. Determination of Vitamin B12 and cobalt in egg yolk using vortex assisted switchable solvent based liquid phase microextraction prior to slotted quartz tube flame atomic absorption spectrometry. Food Chemistry 286:500–5. doi:10.1016/j.foodchem.2019.02.036.
  • Terzioğlu, D., M. Fırat, D. S. Chormey, and S. Bakırdere. 2020. Determination of trace amounts of gold in electroplating rinsing bath by slotted quartz tube flame atomic absorption spectrometry with matrix matching calibration strategy after preconcentration with vortex assisted dispersive liquid–liquid microextraction. Analytical Letters 53 (14):2191–11. doi:10.1080/00032719.2020.1732998.
  • Tuzen, M., O. D. Uluozlu, D. Mendil, M. Soylak, L. O. R. Machado, W. N. L. dos Santos, and S. L. C. Ferreira. 2018. A simple, rapid and green ultrasound assisted and ionic liquid dispersive microextraction procedure for the determination of tin in foods employing ETAAS. Food Chemistry 245:380–4. doi:10.1016/j.foodchem.2017.10.115.
  • Watling, R. J. 1977. The use of a slotted quartz tube for the analysis of trace metals in fresh water. Water SA 3 (4):218–21.
  • Yazıcı, E., M. Fırat, D. Selali, E. Gülhan, and S. Bakırdere. 2020. An accurate determination method for cobalt in sage tea and cobalamin: Slotted quartz tube-flame atomic absorption spectrometry after preconcentration with switchable liquid-liquid microextraction using a Schiff base. Food Chemistry 302:125336. doi:10.1016/j.foodchem.2019.125336.
  • Zvěřina, O., J. Kuta, P. Coufalík, P. Kosečková, and J. Komárek. 2019. Simultaneous determination of cadmium and iron in different kinds of cereal flakes using high-resolution continuum source atomic absorption spectrometry. Food Chemistry 298:125084. doi:10.1016/j.foodchem.2019.125084.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.