406
Views
7
CrossRef citations to date
0
Altmetric
Bioanalytical

Novel, Highly Sensitive, and Specific Assay to Monitor Acute Myocardial Infarction (AMI) by the Determination of Cardiac Troponin I (cTnI) and Heart-Type Fatty Acid Binding Protein (H-FABP) by a Colloidal Gold-Based Immunochromatographic Test Strip

, , , , , , & show all
Pages 1329-1350 | Received 30 Mar 2020, Accepted 25 Jul 2020, Published online: 16 Sep 2020

References

  • Amundson, B. E., and F. S. Apple. 2015. Cardiac troponin assays: A review of quantitative point-of-care devices and their efficacy in the diagnosis of myocardial infarction. Clinical Chemistry and Laboratory Medicine 53 (5):665–76. doi:10.1515/cclm-2014-0837.
  • Antonio, M. D., J. Lupon, A. Galan, J. Vila, E. Zamora, A. Urrutia, C. Diez, R. Coll, S. Altimir, and A. Bayes-Genis. 2013. Head-to-head comparison of high-sensitivity troponin T and sensitive-contemporary troponin I regarding heart failure risk stratification. Clinica Chimica Acta 426:18–24. doi:10.1016/j.cca.2013.08.014.
  • Apple, F. S., A. Falahati, P. R. Paulsen, E. A. Miller, and S. W. Sharkey. 1997. Improved detection of minor ischemic myocardial injury with measurement of serum cardiac troponin I. Clinical Chemistry 43 (11):2047–51. doi:10.1093/clinchem/43.11.2047.
  • Archan, S., and L. A. Fleisher. 2010. From creatine kinase-MB to troponin: The adoption of a new standard. Anesthesiology 112 (4):1005–12. doi:10.1097/ALN.0b013e3181d31fa8.
  • Bakirhan, N. K., G. Ozcelikay, and S. A. Ozkan. 2018. Recent progress on the sensitive detection of cardiovascular disease markers by electrochemical-based biosensors. Journal of Pharmaceutical and Biomedical Analysis 159:406–24. doi:10.1016/j.jpba.2018.07.021.
  • Bodor, G. S., S. Porter, Y. Landt, and J. H. Ladenson. 1992. Development of monoclonal antibodies for an assay of cardiac troponin-I and preliminary results in suspected cases of myocardial infarction. Clinical Chemistry 38 (11):2203–14. doi:10.1093/clinchem/38.11.2203.
  • Chan, C. P. Y., W. S. Cheng, J. F. C. Glatz, D. Voort, J. E. Sanderson, A. Hempel, M. Lehmann, I. Renneberg, and R. Renneberg. 2003. Early diagnosis of acute myocardial infarction using immunosensors and immunotests. Analytical Letters 36 (9):1987–2004. doi:10.1081/AL-120023625.
  • Char, D. M., E. Israel, and J. Ladenson. 1998. Early laboratory indicators of acute myocardial infarction. Emergency Medicine Clinics of North America 16 (3):519–39. doi:10.1016/S0733-8627(05)70016-X.
  • Chin, C. T., T. Y. Wang, S. Li, S. D. Wiviott, J. A. deLemos, M. C. Kontos, E. D. Peterson, and M. T. Roe. 2012. Comparison of the prognostic value of peak creatine kinase-MB and troponin levels among patients with acute myocardial infarction: a report from the acute coronary treatment and intervention outcomes network registry-get with the guidelines. Clinical Cardiology 35 (7):424–9. doi:10.1002/clc.21980.
  • Cho, I. H., E. H. Paek, Y. K. Kim, J. H. Kim, and S. H. Paek. 2009. Chemiluminometric enzyme-linked immunosorbent assays (ELISA)-on-a-chip biosensor based on cross-flow chromatography. Analytica Chimica Acta 632 (2):247–55. doi:10.1016/j.aca.2008.11.019.
  • Couto, G., M. Ouzounian, and P. P. Liu. 2010. Early detection of myocardial dysfunction and heart failure. Nature Reviews. Cardiology 7 (6):334–44. doi:10.1038/nrcardio.2010.51.
  • Dolak, İ., R. Keçili, R. Onat, B. Ziyadanoğulları, A. Ersöz, and R. Say. 2018. Molecularly imprinted affinity cryogels for the selective recognition of myoglobin in blood serum. Journal of Molecular Structure 1174:171–6. doi:10.1016/j.molstruc.2018.03.126.
  • Dong, W., X. Mo, Y. Wang, Q. Lei, and H. Li. 2020. Photoelectrochemical immunosensor based on ZnIn2S4/Bi2Se3 nanocomposite for the determination of cardiac troponin I. Analytical Letters 53 (12):1888–901. doi:10.1080/00032719.2020.1721003.
  • Eggers, K. M., J. Oldgren, A. Nordenskjöld, and B. Lindahl. 2004. Diagnostic value of serial measurement of cardiac markers in patients with chest pain: Limited value of adding myoglobin to troponin I for exclusion of myocardial infarction. American Heart Journal 148 (4):574–81. doi:10.1016/j.ahj.2004.04.030.
  • Fathil, M. F., M. K. Md Arshad, S. C. Gopinath, U. Hashim, R. Adzhri, R. M. Ayub, A. R. Ruslinda, M. N. M. Nuzaihan, A. H. Azman, M. Zaki, et al. 2015. Diagnostics on acute myocardial infarction: Cardiac troponin biomarkers. Biosensors & Bioelectronics 70:209–20. doi:10.1016/j.bios.2015.03.037.
  • Gnedenko, O. V., Y. V. Mezentsev, A. A. Molnar, A. V. Lisitsa, A. S. Ivanov, and A. I. Archakov. 2013. Highly sensitive detection of human cardiac myoglobin using a reverse sandwich immunoassay with a gold nanoparticle-enhanced surface plasmon resonance biosensor. Analytica Chimica Acta 759:105–9. doi:10.1016/j.aca.2012.10.053.
  • Guo, X., L. Zong, Y. Jiao, Y. Han, X. Zhang, J. Xu, L. Li, C. W. Zhang, Z. Liu, Q. Ju, et al. 2019. Signal-enhanced detection of multiplexed cardiac biomarkers by a paper-based fluorogenic immunodevice integrated with zinc oxide nanowires. Analytical Chemistry 91 (14):9300–7. doi:10.1021/acs.analchem.9b02557.
  • Han, X., S. Li, Z. Peng, A. M. Othman, and R. Leblanc. 2016. Recent development of cardiac troponin I detection. ACS Sensors 1 (2):106–14. doi:10.1021/acssensors.5b00318.
  • Hou, F., X. L. Fu, X. B. Hu, J. T. Cao, S. H. Ma, and Y. M. Liu. 2020. Label-free electrochemiluminescence immunosensor for the determination of cardiac troponin I using a cadmium sulfide–molybdenum (IV) sulfide nanocomposite modified glassy carbon electrode. Analytical Letters 53 (9):1416–27. doi:10.1080/00032719.2019.1709074.
  • Jaffe, A. S., L. Babuin, and F. S. Apple. 2006. Biomarkers in acute cardiac disease: the present and the future. Journal of the American College of Cardiology 48 (1):1–11. doi:10.1016/j.jacc.2006.02.056.
  • Jarolim, P. 2015. High sensitivity cardiac troponin assays in the clinical laboratories. Clinical Chemistry and Laboratory Medicine 53 (5):635–52. doi:10.1515/cclm-2014-0565.
  • Ji, T., X. Xu, X. Wang, Q. Zhou, W. Ding, B. Chen, X. Guo, Y. Hao, and G. Chen. 2019. Point of care upconversion nanoparticles-based lateral flow assay quantifying myoglobin in clinical human blood samples. Sensors and Actuators B: Chemical 282:309–16. doi:10.1016/j.snb.2018.11.074.
  • Kaczyñska, A., M. M. A. L. Pelsers, A. Bochowicz, M. Kostrubiec, J. F. C. Glatz, and P. Pruszczyk. 2006. Plasma heart-type fatty acid binding protein is superior to troponin and myoglobin for rapid risk stratification in acute pulmonary embolism. Clinica Chimica Acta 371 (1-2):117–23. doi:10.1016/j.cca.2006.02.032.
  • Kakoti, A., and P. Goswami. 2013. Heart type fatty acid binding protein: Structure, function and biosensing applications for early detection of myocardial infarction. Biosensors & Bioelectronics 43:400–11. doi:10.1016/j.bios.2012.12.057.
  • Lewandrowski, K., A. Chen, and J. Januzzi. 2002. Cardiac markers for myocardial infarction. Pathology Patterns Reviews 118 (suppl_1):S93–S99. doi:10.1092/87CMFCR7TXUXH11Y.
  • Li, X., S. Zhou, S. Lu, D. Tu, W. Zheng, Y. Liu, R. Li, and X. Chen. 2019. Lanthanide metal-organic framework nanoprobes for the in vitro detection of cardiac disease markers . ACS Applied Materials & Interfaces 11 (47):43989–95. doi:10.1021/acsami.9b17637.
  • Lim, W. Y., T. M. Thevarajah, B. T. Goh, and S. M. Khor. 2019. Paper microfluidic device for early diagnosis and prognosis of acute myocardial infarction via quantitative multiplex cardiac biomarker detection. Biosensors & Bioelectronics 128:176–85. doi:10.1016/j.bios.2018.12.049.
  • Luepker, R. V., and A. K. Berger. 2010. Is acute myocardial infarction disappearing?. Circulation 121 (11):1280–2. doi:10.1161/CIR.0b013e3181d98478.
  • Mair, J., E. Artner-Dworzak, A. Dienstl, P. Lechleitner, B. Morass, J. Smidt, I. Wagner, C. Wettach, and B. Puschendorf. 1991. Early retection of acute myocardial infarction by measurement of mass concentration of creatine kinase-MB. The American Journal of Cardiology 68 (17):1545–50. doi:10.1016/0002-9149(91)90307-7.
  • Mair, J., B. Lindahl, O. Hammarsten, C. Müller, E. Giannitsis, K. Huber, M. Möckel, M. Plebani, K. Thygesen, and A. S. Jaffe. 2018. How is cardiac troponin released from injured myocardium?. European Heart Journal. Acute Cardiovascular Care 7 (6):553–60. doi:10.1177/2048872617748553.
  • Masson, J. F., T. M. Battaglia, P. Khairallah, S. Beaudoin, and K. S. Booksh. 2007. Quantitative measurement of cardiac markers in undiluted serum. Analytical Chemistry 79 (2):612–9. doi:10.1021/ac061089f.
  • McCann, C. J., B. M. Glover, I. B. Menown, M. J. Moore, J. McEneny, C. G. Owens, B. Smith, P. C. Sharpe, I. S. Young, and J. A. Adgey. 2008. Novel biomarkers in early diagnosis of acute myocardial infarction compared with cardiac troponin T. European Heart Journal 29 (23):2843–50. doi:10.1093/eurheartj/ehn363.
  • McDonnell, B., S. Hearty, P. Leonard, and R. O'Kennedy. 2009. Cardiac biomarkers and the case for point-of-care testing. Clinical Biochemistry 42 (7-8):549–61. doi:10.1016/j.clinbiochem.2009.01.019.
  • Menown, I. B. A., G. Mackenzie, and A. A. J. Adgey. 2000. Optimizing the initial 12-lead electrocardiographic diagnosis of acute myocardial infarction. European Heart Journal 21 (4):275–83. doi:10.1053/euhj.1999.1748.
  • Moreira, F. T. C., R. A. F. Dutra, J. P. C. Noronha, and M. G. F. Sales. 2013. Electrochemical biosensor based on biomimetic material for myoglobin detection. Electrochimica Acta 107:481–7. doi:10.1016/j.electacta.2013.06.061.
  • O'Regan, T., M. Pravda, C. K. O'Sullivan, and G. G. Guilbault. 2003. Development of Biosensor Array for Rapid Detection of Cardiac Markers: Immunosensor for Detection of Free Cardiac Troponin I. Analytical Letters 36 (9):1903–20. doi:10.1081/AL-120023621.
  • Otaki, Y., T. Watanabe, and I. Kubota. 2017. Heart-type fatty acid-binding protein in cardiovascular disease: A systemic review. Clinica Chimica Acta; International Journal of Clinical Chemistry 474:44–53. doi:10.1016/j.cca.2017.09.007.
  • Pyo, D. 2007. Comparison of fluorescence immunochromatographic assay strip and gold colloidal immunochromatographic assay strip for detection of microcystin. Analytical Letters 40 (5):907–19. doi:10.1080/00032710701242725.
  • Qureshi, A., Y. Gurbuz, and J. H. Niazi. 2012. Biosensors for cardiac biomarkers detection: A review. Sensors and Actuators B: Chemical 171-172:62–76. doi:10.1016/j.snb.2012.05.077.
  • Shen, W., D. Tian, H. Cui, D. Yang, and Z. Bian. 2011. Nanoparticle-based electrochemiluminescence immunosensor with enhanced sensitivity for cardiac troponin I using N-(aminobutyl)-N-(ethylisoluminol)-functionalized gold nanoparticles as labels. Biosensors & Bioelectronics 27 (1):18–24. doi:10.1016/j.bios.2011.05.022.
  • Sun, D., Z. Luo, J. Lu, S. Zhang, T. Che, Z. Chen, and L. Zhang. 2019. Electrochemical dual-aptamer-based biosensor for nonenzymatic detection of cardiac troponin I by nanohybrid electrocatalysts labeling combined with DNA nanotetrahedron structure. Biosensors & Bioelectronics 134:49–56. doi:10.1016/j.bios.2019.03.049.
  • Suprun, E., T. Bulko, A. Lisitsa, O. Gnedenko, A. Ivanov, V. Shumyantseva, and A. Archakov. 2010. Electrochemical nanobiosensor for express diagnosis of acute myocardial infarction in undiluted plasma. Biosensors & Bioelectronics 25 (7):1694–8. doi:10.1016/j.bios.2009.12.009.
  • Tong, C. Y., C. P. Y. Chan, K. Y. Cheung, G. W. H. Cautherley, J. F. C. Glatz, and R. Renneberg. 2010. A point-of-care immunotest for bedside determination of heart-type fatty acid-binding protein. Analytical Letters 43 (4):735–44. doi:10.1080/00032710903406987.
  • van der Linden, N., K. Wildi, R. Twerenbold, J. W. Pickering, M. Than, L. Cullen, J. Greenslade, W. Parsonage, T. Nestelberger, J. Boeddinghaus, et al. 2018. Combining high-sensitivity cardiac troponin I and cardiac troponin T in the early diagnosis of acute myocardial infarction. Circulation 138 (10):989–99. doi:10.1161/CIRCULATIONAHA.117.032003.
  • Wang, J., X. Wang, L. Ren, Q. Wang, L. Li, W. Liu, Z. Wan, L. Yang, P. Sun, L. Ren, et al. 2009. Conjugation of biomolecules with magnetic protein microspheres for the assay of early biomarkers associated with acute myocardial infarction. Analytical Chemistry 81 (15):6210–7.,doi:10.1021/ac9007418.
  • White, H. D., and D. P. Chew. 2008. Acute myocardial infarction. The Lancet 372 (9638):570–84. doi:10.1016/S0140-6736(08)61237-4.
  • Wu, M., X. Zhang, R. Wu, G. Wang, J. Li, Y. Chai, H. Shen, and L. S. Li. 2020. Sensitive and quantitative determination of cardiac troponin I based on silica-encapsulated CdSe/ZnS quantum dots and a fluorescence lateral flow immunoassay. Analytical Letters 53 (11):1757–73. doi:10.1080/00032719.2020.1719125.
  • Xing, S. S., Q. C. Xing, Y. Zhang, and W. Zhang. 2007. Effect of serum creatine kinase-MBmass on the early and hierarchical diagnosis of related artery reperfusion in acute myocardial infarction. Postgraduate Medical Journal 83 (980):422–5. doi:10.1136/pgmj.2006.056796.
  • Yang, R., F. Li, W. Zhang, W. Shen, D. Yang, Z. Bian, and H. Cui. 2019. Chemiluminescence immunoassays for simultaneous detection of three heart disease biomarkers using magnetic carbon composites and three-dimensional microfluidic paper-based device. Analytical Chemistry 91 (20):13006–13. doi:10.1021/acs.analchem.9b03066.
  • Yang, Z., and D. M. Zhou. 2006. Cardiac markers and their point-of-care testing for diagnosis of acute myocardial infarction. Clinical Biochemistry 39 (8):771–80. doi:10.1016/j.clinbiochem.2006.05.011.
  • Ye, X., Y. He, S. Wang, G. T. Wong, M. G. Irwin, and Z. Xia. 2018. Heart-type fatty acid binding protein (H-FABP) as a biomarker for acute myocardial injury and long-term post-ischemic prognosis. Acta Pharmacologica Sinica 39 (7):1155–63. doi:10.1038/aps.2018.37.
  • Yoo, S. S., S. Y. Kim, K. S. Kim, S. Hong, M. J. Oh, M. G. Nam, W.-J. Kim, J. Park, C.-H. Chung, W.-S. Choe, et al. 2020. Controlling inter-sheet-distance in reduced graphene oxide electrodes for highly sensitive electrochemical impedimetric sensing of myoglobin. Sensors and Actuators B: Chemical 305:127477–85. doi:10.1016/j.snb.2019.127477.
  • Zhao, K., M. Tang, H. Wang, Z. Zhou, Y. Wu, and S. Liu. 2019. Simultaneous detection of three biomarkers related to acute myocardial infarction based on immunosensing biochip. Biosensors & Bioelectronics 126:767–72. doi:10.1016/j.bios.2018.11.044.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.