179
Views
3
CrossRef citations to date
0
Altmetric
Fluorescence

Selective Near-Infrared Fluorescent Probe for Monitoring Thiophenol in Real Water Samples and Living Cells

&
Pages 1366-1376 | Received 09 Jun 2020, Accepted 26 Jul 2020, Published online: 06 Aug 2020

References

  • Amrolia, P., S. G. Sullivan, A. Stern, and R. Munday. 1989. Toxicity of aromatic thiols in the human red blood cell. Journal of Applied Toxicology: JAT 9 (2):113–8. doi:10.1002/jat.2550090208.
  • Buratti, M., G. Brambilla, S. Fustinoni, O. Pellegrino, S. Pulviremti, and A. Colombi. 2001. Determination of monobromobimane derivatives of phenylmercapturic and benzylmercapturic acids in urine by high-performance liquid chromatography and fluorimetry. Journal of Chromatography B: Biomedical Sciences and Applications 751 (2):305–13. doi:10.1016/S0378-4347(00)00491-6.
  • Cai, Y., Z. Wei, C. H. Song, C. C. Tang, W. Han, and X. C. Dong. 2019. Optical nano-agents in the second near-infrared window for biomedical applications. Chemical Society Reviews 48 (1):22–37. doi:10.1039/c8cs00494c.
  • Chang, Z., F. Liu, L. Wang, M. Y. Deng, C. H. Zhou, Q. C. Sun, and J. Chu. 2019. Near-infrared dyes, nanomaterials and proteins. Chinese Chemical Letters 30 (10):1856–82. doi:10.1016/j.cclet.2019.08.034.
  • Choi, M. G., M. J. Cho, H. Ryu, J. Hong, and S.-K. Chang. 2017. Fluorescence signaling of thiophenol by hydrolysis of dinitrobenzenesulfonamide of 2-(2-aminophenyl)benzothiazole. Dyes and Pigments 143:123–8. doi:10.1016/j.dyepig.2017.04.026.
  • Feng, G., and Y. Du. 2020. Intramolecular Charge Transfer (ICT) based two-photon fluorescent probe for bisulfite with bioimaging applications. Analytical Letters 53 (1):40–52. doi:10.1080/00032719.2019.1636258.
  • Gai, J., C. Chen, J. Huang, J. Sheng, W. Chen, and X. Song. 2020. An acetophenothiazine-based fluorescence probe for multi-channel imaging of thiophenol with a large Stokes shift. Tetrahedron Letters 61 (26):152038. doi:10.1016/j.tetlet.2020.152038.
  • Graniel, O., I. Iatsunskyi, E. Coy, C. Humbert, G. Barbillon, T. Michel, D. Maurin, S. Balme, P. Miele, and M. Bechelany. 2019. Au-covered hollow urchin-like ZnO nanostructures for surface-enhanced Raman scattering sensing. Journal of Materials Chemistry C 7 (47):15066–73. doi:10.1039/C9TC05929F.
  • Guo, S.-H., T.-H. Leng, K. Wang, C.-Y. Wang, Y.-J. Shen, and W.-H. Zhu. 2018. A colorimetric and turn-on NIR fluorescent probe based on xanthene system for sensitive detection of thiophenol and its application in bioimaging. Talanta 185:359–64. doi:10.1016/j.talanta.2018.03.062.
  • Hao, Y. Q., Q. Y. Yin, Y. T. Zhang, M. T. Xu, and S. Chen. 2019. Recent progress in the development of fluorescent probes for thiophenol. Molecules 24 (20):3716. doi:10.3390/molecules24203716.
  • Hao, Y., Y. Zhang, A. Zhang, Q. Sun, J. Zhu, P. Qu, S. Chen, and M. Xu. 2020. A benzothiazole-based ratiometric fluorescent probe for detection of formaldehyde and its applications for bioimaging. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 229:117988. doi:10.1016/j.saa.2019.117988.
  • Heil, T. P., and R. C. Lindsay. 1989. Toxicological properties of thio- and alkylphenols causing flavor tainting in fish from the upper Wisconsin River. Journal of Environmental Science and Health. Part. B, Pesticides, Food Contaminants, and Agricultural Wastes 24 (4):349–60. doi:10.1080/03601238909372654.
  • Hong, J., Q. Xia, W. Feng, and G. Feng. 2018. A dicyanoisophorone-based near-infrared fluorescent probe and its application for detecting thiophenols in water and living cells. Dyes and Pigments 159:604–9. doi:10.1016/j.dyepig.2018.07.033.
  • Jiang, W., Q. Fu, H. Fan, J. Ho, and W. Wang. 2007. A highly selective fluorescent probe for thiophenols. Angewandte Chemie (International ed. in English) 46 (44):8445–8. doi:10.1002/anie.200702271.
  • Juneja, T. R., R. L. Gupta, and S. Samanta. 1984. Activation of monocrotaline, fulvine and their derivatives to toxic pyrroles by some thiols. Toxicology Letters 21 (2):185–9. doi:10.1016/0378-4274(84)90204-2.
  • Liu, T., Q.-L. Yan, L. Feng, X.-C. Ma, X.-G. Tian, Z.-L. Yu, J. Ning, X.-K. Huo, C.-P. Sun, C. Wang, et al. 2018. Isolation of γ-glutamyl-transferase rich-bacteria from mouse gut by a near-infrared fluorescent probe with large stokes shift. Analytical Chemistry 90 (16):9921–8. doi:10.1021/acs.analchem.8b02118.
  • Nguyen, K. H., Y. Hao, W. Chen, Y. Zhang, M. Xu, M. Yang, and Y.-N. Liu. 2018. Recent progress in the development of fluorescent probes for hydrazine. Luminescence: The Journal of Biological and Chemical Luminescence 33 (5):816–36. doi:10.1002/bio.3505.
  • Qiao, J.-Q., Y.-C. Bao, J.-H. Yang, Q. Jiang, and H.-Z. Lian. 2010. Identification and quantification of related impurities in 2-chloroethyl phenyl sulfide for industrial use. Industrial & Engineering Chemistry Research 49 (2):443–7. doi:10.1021/ie9014167.
  • Scarabelli, L., M. Coronado-Puchau, J. J. Giner-Casares, J. Langer, and L. M. Liz-Marzán. 2014. Monodisperse gold nanotriangles: size control, large-scale self-assembly, and performance in surface-enhanced Raman scattering. ACS Nano 8 (6):5833–42. doi:10.1021/nn500727w.
  • Shimada, K., and K. Mitamura. 1994. Derivatization of thiol-containing compounds. Journal of Chromatography B: Biomedical Sciences and Applications 659 (1–2):227–41. doi:10.1016/0378-4347(93)E0444-U.
  • Sun, J., K. Wang, S. Han, M. Zhang, Y. Wang, W. Qian, H. Zhang, and J. Dong. 2018. A SERS method for thermal neutron detection. Journal of Raman Spectroscopy 49 (7):1190–7. doi:10.1002/jrs.5368.
  • Sun, Q., S.-H. Yang, L. Wu, W.-C. Yang, and G.-F. Yang. 2016. A highly sensitive and selective fluorescent probe for thiophenol designed via a twist-blockage strategy. Analytical Chemistry 88 (4):2266–72. doi:10.1021/acs.analchem.5b04029.
  • Sun, Z.-B., Y. Hua, M.-J. Gao, Y-j Shang, and Y.-F. Kang. 2020. Highly Selective Fluorescent 4-(4-(Diethylamino)-2-Hydroxystyryl)-1-Methylpyridine iodide and nitrobenzofurazan based probe for cysteine with application in living cells. Analytical Letters:1–13. doi:10.1080/00032719.2020.1767121.
  • Wang, K., T. Leng, Y. Liu, C. Wang, P. Shi, Y. Shen, and W.-H. Zhu. 2017. A novel near-infrared fluorescent probe with a large stokes shift for the detection and imaging of biothiols. Sensors and Actuators B: Chemical 248:338–45. doi:10.1016/j.snb.2017.03.127.
  • Wang, W., Q. Guo, M. Xu, Y. Yuan, R. Gu, and J. Yao. 2014. On-line surface enhanced Raman spectroscopic detection in a recyclable Au@SiO2 modified glass capillary. Journal of Raman Spectroscopy 45 (9):736–44. doi:10.1002/jrs.4553.
  • Wu, J., D. Su, C. Qin, W. Li, J. Rodrigues, R. Sheng, and L. Zeng. 2019. A fast responsive chromogenic and near-infrared fluorescence lighting-up probe for visual detection of toxic thiophenol in environmental water and living cells. Talanta 201:111–8. doi:10.1016/j.talanta.2019.03.113.
  • Xiong, L., L. Yang, S. Luo, Y. Huang, and Z. Lu. 2017. Highly sensitive iridium(iii) complex-based phosphorescent probe for thiophenol detection. Dalton Transactions (Cambridge, England: 2003) 46 (39):13456–62. doi:10.1039/C7DT02263H.
  • You, J., K. Dou, C. Song, G. Li, Z. Sun, S. Zhang, G. Chen, X. Zhao, N. Hu, and W. Zhou. 2017. 3-(2-Bromoacetamido)-N-(9-ethyl-9H)-carbazol fluorescent probe and its application for the determination of thiophenols in rubber products by HPLC with fluorescence detection and atmospheric chemical ionization mass spectrometry identification. Journal of Separation Science 40 (12):2528–40. doi:10.1002/jssc.201601166.
  • Yu, D., F. Huang, S. Ding, and G. Feng. 2014. Near-infrared fluorescent probe for detection of thiophenols in water samples and living cells. Analytical Chemistry 86 (17):8835–41. doi:10.1021/ac502227p.
  • Zhou, S., Y. Rong, H. Wang, X. Liu, L. Wei, and X. Song. 2018. A naphthalimide-indole fused chromophore-based fluorescent probe for instantaneous detection of thiophenol with a red emission and a large Stokes shift. Sensors and Actuators B: Chemical 276:136–41. doi:10.1016/j.snb.2018.08.096.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.