86
Views
0
CrossRef citations to date
0
Altmetric
Preconcentration Techniques

Extractant Forced-Circulation Three-Phase Extraction for the Preconcentration of Parts-per-Billion (Ppb)-Level Cadmium(II) from Natural Waters

, , , &
Pages 1561-1577 | Received 07 Jun 2020, Accepted 18 Aug 2020, Published online: 28 Aug 2020

References

  • Ahmad, A. L., A. Kusumastuti, C. J. C. Derek, and B. S. Ooi. 2011. Emulsion liquid membrane for heavy metal removal: An overview on emulsion stabilization and destabilization. Chemical Engineering Journal 171 (3):870–82. doi:10.1016/j.cej.2011.05.102.
  • Altunay, N., E. Yıldırım, and R. Gürkan. 2018. Extraction and preconcentration of trace Al and Cr from vegetable samples by vortex-assisted ionic liquid-based dispersive liquid-liquid microextraction prior to atomic absorption spectrometric determination. Food Chemistry 245:586–94. doi:10.1016/j.foodchem.2017.10.134.
  • Belova, V. V. 2016. Free supported liquid membranes. Theoretical Foundations of Chemical Engineering 50 (4):642–7. doi:10.1134/S0040579516040059.
  • Belova, V. V., and Y. A. Zakhodyaeva. 2015. Extraction and separation of metals using the combined method of liquid membrane techniques. Theoretical Foundations of Chemical Engineering 49 (4):567–72. doi:10.1134/S004057951504003X.
  • Blicharska, E., M. Tatarczak-Michalewska, A. Plazińska, W. Plaziński, A. Kowalska, A. Madejska, M. Szymańska-Chargot, A. Sroka-Bartnicka, and J. Flieger. 2018. Solid-phase extraction using octadecyl-bonded silica modified with photosynthetic pigments from Spinacia oleracea L. for the preconcentration of lead(II) ions from aqueous samples. Journal of Separation Science 41 (15):3129–42. doi:10.1002/jssc.201800163.
  • Chen, S., J. Yan, J. Li, and D. Lu. 2019. Dispersive micro-solid phase extraction using magnetic ZnFe2O4 nanotubes as adsorbent for preconcentration of Co(II), Ni(II), Mn(II) and Cd(II) followed by ICP-MS determination. Microchemical Journal 147:232–8. doi:10.1016/j.microc.2019.02.066.
  • Ministry of Ecology and Environment of the People's Republic of China. 2001. Environmental Quality Standards for Surface Water of China (GB 3838-2002). http://www.mee.gov.cn/.
  • Farajzadeh, M. A., A. Mohebbi, and B. Feriduni. 2016. Development of continuous dispersive liquid-liquid microextraction performed in home-made device for extraction and preconcentration of aryloxyphenoxy-propionate herbicides from aqueous samples followed by gas chromatography-flame ionization detection . Analytica Chimica Acta 920:1–9. doi:10.1016/j.aca.2016.03.041.
  • Garmsiri, M., and H. R. Mortaheb. 2015. Enhancing performance of hybrid liquid membrane process supported by porous anionic exchange membranes for removal of cadmium from wastewater. Chemical Engineering Journal 264:241–50. doi:10.1016/j.cej.2014.11.061.
  • Gu, Z., Q. Wu, Z. Zheng, Z. Li, Y. Jiang, C. Tang, and P. Lin. 1994. Laboratory and pilot plant test of yttrium recovery from wastewater by electrostatic pseudo liquid membrane. Journal of Membrane Science 93 (2):137–47. doi:10.1016/0376-7388(94)80002-2.
  • Guha, A. K., C. H. Yun, R. Basu, and K. K. Sirkar. 1994. Heavy metal removal and recovery by contained liquid membrane permeator. AIChE Journal 40 (7):1223–37. doi:10.1002/aic.690400713.
  • Hao, Z., Z. Wang, W. Zhang, and W. S. Winston Ho. 2014. Supported liquid membranes with organic dispersion for recovery of Cephalexin. Journal of Membrane Science 468:90–7. doi:10.1016/j.memsci.2014.05.052.
  • Hashemi, B., and S. Rezania. 2019. Carbon-based sorbents and their nanocomposites for the enrichment of heavy metal ions: A review. Mikrochimica Acta 186 (8):578doi:10.1007/s00604-019-3668-2.
  • Komjarova, I., and R. Blust. 2006. Comparison of liquid-liquid extraction, solid-phase extraction and co-precipitation preconcentration methods for the determination of cadmium, copper, nickel, lead and zinc in seawater . Anal. Chim. Acta 576 (2):221–8. doi:10.1016/j.aca.2006.06.002.
  • Kostanian, A. E. 2000a. Method for exchanging materials between two liquid phases. WO Patent No. 9,843,718.
  • Kostanian, A. E. 2000b. Multi-phase extraction apparatus. WO Patent No. 9,826,850.
  • Kostanian, A. E. 2000c. Multi-stage extraction process. WO Patent No. 9,714,487.
  • Lewis, A. E. 2010. Review of metal sulphide precipitation. Hydrometallurgy 104 (2):222–34. doi:10.1016/j.hydromet.2010.06.010.
  • Malik, M. A., M. A. Hashim, and F. Nabi. 2011. Ionic liquids in supported liquid membrane technology. Chemical Engineering Journal 171 (1):242–54. doi:10.1016/j.cej.2011.03.041.
  • Mendil, D., M. Karatas, and M. Tuzen. 2015. Separation and preconcentration of Cu(II), Pb(II), Zn(II), Fe(III) and Cr(III) ions with coprecipitation method without carrier element and their determination in food and water samples. Food Chemistry 177:320–4. doi:10.1016/j.foodchem.2015.01.008.
  • Naeemullah, N.,. F. Shah, T. G. Kazi, H. I. Afridi, A. R. Khan, S. S. Arain, M. S. Arain, and A. H. Panhwar. 2016. Switchable dispersive liquid–liquid microextraction for lead enrichment: A green alternative to classical extraction techniques. Analytical Methods 8 (4):904–11. doi:10.1039/C5AY02882E.
  • Pena-Pereira, F., I. Lavilla, and C. Bendicho. 2009. Miniaturized preconcentration methods based on liquid–liquid extraction and their application in inorganic ultratrace analysis and speciation: A review. Spectrochimica Acta Part B: Atomic Spectroscopy 64 (1):1–15. doi:10.1016/j.sab.2008.10.042.
  • Ramos Payán, M. D., H. Jensen, N. J. Petersen, S. H. Hansen, and S. Pedersen-Bjergaard. 2012. Liquid-phase microextraction in a microfluidic-chip-high enrichment and sample clean-up from small sample volumes based on three-phase extraction . Analytica Chimica Acta 735:46–53. doi:10.1016/j.aca.2012.05.023.
  • Saljooqi, A., T. Shamspur, M. Mohamadi, D. Afzali, and A. Mostafavi. 2015. A microextraction procedure based on a task-specific ionic liquid for the separation and preconcentration of lead ions from red lipstick and pine leaves. Journal of Separation Science 38 (10):1777–83. doi:10.1002/jssc.201401328.
  • Satarpai, T., J. Shiowatana, and A. Siripinyanond. 2016. Paper-based analytical device for sampling, on-site preconcentration and detection of ppb lead in water. Talanta 154:504–10. doi:10.1016/j.talanta.2016.04.017.
  • Swain, B., C. Mishra, J. Jeong, J. Lee, H. S. Hong, and B. D. Pandey. 2015. Separation of Co(II) and Li(I) with Cyanex 272 using hollow fiber supported liquid membrane: A comparison with flat sheet supported liquid membrane and dispersive solvent extraction process. Chemical Engineering Journal 271:61–70. doi:10.1016/j.cej.2015.02.040.
  • Szczepański, P. 2018. Experimental and model studies of p–nitrophenol and phenol separation in the bulk liquid membrane with the application of bond–graph method. Chemical Engineering Science 185:141–8. doi:10.1016/j.ces.2018.04.007.
  • Takeshita, K., K. Watanabe, Y. Nakano, and M. Watanabe. 2003. Solvent extraction separation of Cd(II) and Zn(II) with the organophosphorus extractant D2EHPA and the aqueous nitrogen-donor ligand TPEN. Hydrometallurgy 70 (1-3):63–71. doi:10.1016/S0304-386X(03)00046-X.
  • Tuzen, M., and M. Soylak. 2009. Multi-element coprecipitation for separation and enrichment of heavy metal ions for their flame atomic absorption spectrometric determinations. Journal of Hazardous Materials 162 (2-3):724–9. doi:10.1016/j.jhazmat.2008.05.087.
  • Xiao, X.,. N. Yang, Z. Wang, and Y. Huang. 2016. Determination of trace mercury(ii) in wastewater using on-line flow injection spectrophotometry coupled with supported liquid membrane enrichment. Analytical Methods 8 (3):582–6. doi:10.1039/C5AY02725J.
  • Yeh, S., K. Chou, and R. Yang. 2016. Sample pre-concentration with high enrichment factors at a fixed location in paper-based microfluidic devices . Lab on a Chip 16 (5):925–31. doi:10.1039/c5lc01365h.
  • Zawisza, B., A. Baranik, E. Malicka, E. Talik, and R. Sitko. 2016. Preconcentration of Fe(III), Co(II), Ni(II), Cu(II), Zn(II) and Pb(II) with ethylenediamine-modified graphene oxide. Microchimica Acta 183 (1):231–40. doi:10.1007/s00604-015-1629-y.
  • Zeng, L., Q. Liu, L. Luo, L. Liu, and K. Tang. 2019. Enhancement mechanism of an improved liquid membrane using selective permeation retardant for heavy metal ions separation. Chemical Engineering Science 201:1–14. doi:10.1016/j.ces.2019.02.017.
  • Zeng, L., Y. Liu, T. Yang, Y. Yang, and K. Tang. 2018. Simultaneously enhanced ELM selectivity and stability by difunctional additives for batch and continuous separation of Cd(II)/Cu(II). Chemical Engineering Research and Design 140:261–72. doi:10.1016/j.cherd.2018.10.036.
  • Zeng, L., L. Yang, Q. Liu, W. Li, and Y. Yang. 2015. Influences of Axial Mixing of Continuous Phase and Polydispersity of Emulsion Drops on Mass Transfer Performance in a Modified Rotating Disc Contactor for an Emulsion Liquid Membrane System. Industrial & Engineering Chemistry Research 54 (40):9832–43. doi:10.1021/acs.iecr.5b02788.
  • Zeng, L., Y. Zhang, Q. Liu, L. Yang, J. Xiao, X. Liu, and Y. Yang. 2016. Determination of mass transfer coefficient for continuous removal of cadmium by emulsion liquid membrane in a modified rotating disc contactor. Chemical Engineering Journal 289:452–62. doi:10.1016/j.cej.2016.01.004.
  • Zereshki, S., P. Daraei, and A. Shokri. 2018. Application of edible paraffin oil for cationic dye removal from water using emulsion liquid membrane. Journal of Hazardous Materials 356:1–8. doi:10.1016/j.jhazmat.2018.05.037.
  • Zhu, X., Y. Cui, X. Chang, and H. Wang. 2016. Selective solid-phase extraction and analysis of trace-level Cr(III), Fe(III), Pb(II), and Mn(II) Ions in wastewater using diethylenetriamine-functionalized carbon nanotubes dispersed in graphene oxide colloids. Talanta 146:358–63. doi:10.1016/j.talanta.2015.08.073.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.