187
Views
5
CrossRef citations to date
0
Altmetric
Biosensors

Dual Aptamer-Copper (II) Phosphate Nanocomposite-Based Point-of-Care Biosensor for the Determination of Escherichia coli O157:H7 through Pressure Monitoring with a Hand-Held Barometer

, , , , , & show all
Pages 1603-1615 | Received 26 Nov 2019, Accepted 25 Aug 2020, Published online: 11 Sep 2020

References

  • Bayramoglu, G., V. C. Ozalp, M. Oztekin, and M. Y. Arica. 2019. Rapid and label-free detection of Brucella melitensis in milk and milk products using an aptasensor. Talanta 200:263–71. doi:10.1016/j.talanta.2019.03.048.
  • Blsakova, A., F. Kveton, and J. Tkac. 2019. Glycan modified interfaces in biosensing: An electrochemical approach. Current Opinion in Electrochemistry 14:60–5. doi:10.1016/j.coelec.2018.12.011.
  • Bu, S., K. Wang, C. Ju, C. Wang, Z. Li, Z. Hao, M. Shen, and J. Wan. 2019. Point-of-care assay to detect foodborne pathogenic bacteria using a low-cost disposable medical infusion extension line as readout and MnO2 nanoflowers. Food Control 98:399–404. doi:10.1016/j.foodcont.2018.11.053.
  • Bu, S. J., K. Y. Wang, H. S. Bai, Y. Leng, C. J. Ju, C. Y. Wang, and J. Y. Wan. 2019. Immunoassay for pathogenic bacteria using platinum nanoparticles and a hand-held hydrogen detector as transducer. Application to the detection of Escherichia coli O157:H7. Microchimica Acta 186(5), 296. doi:10.1007/s00604-019-3409-6.
  • Chen, J., S. M. Andler, J. M. Goddard, S. R. Nugen, and V. M. Rotello. 2017. Integrating recognition elements with nanomaterials for bacteria sensing. Chemical Society Reviews 46 (5):1272–83. doi:10.1039/c6cs00313c.
  • Couto, R. A. S., L. Chen, S. Kuss, and R. G. Compton. 2018. Detection of Escherichia coli bacteria by impact electrochemistry. The Analyst 143 (20):4840–3. doi:10.1039/C8AN01675E.
  • Dai, G., Z. Li, F. Luo, S. Ai, B. Chen, and Q. Wang. 2019. Electrochemical determination of Salmonella typhimurium by using aptamer-loaded gold nanoparticles and a composite prepared from a metal-organic framework (type UiO-67) and graphene. Microchimica Acta 186 (9), 620. doi:10.1007/s00604-019-3724-y.
  • Ge, J., J. Lei, and R. N. Zare. 2012. Protein-inorganic hybrid nanoflowers. Nature Nanotechnology 7 (7):428–32. doi:10.1038/nnano.2012.80.
  • Jia, M., J. Liu, J. Zhang, and H. Zhang. 2019. An immunofiltration strip method based on the photothermal effect of gold nanoparticles for the detection of Escherichia coli O157:H7. The Analyst 144 (2):573–8. doi:10.1039/C8AN01004H.
  • Jiang, Y., Z. Su, J. Zhang, M. Cai, and L. Wu. 2018. A novel electrochemical immunoassay for carcinoembryonic antigen based on glucose oxidase-encapsulated nanogold hollow spheres with a pH meter readout. The Analyst 143 (21):5271–7. doi:10.1039/c8an06a.
  • Kong, D., R. Jin, X. Zhao, H. Li, X. Yan, F. Liu, P. Sun, Y. Gao, X. Liang, Y. Lin, et al. 2019. Protein-inorganic hybrid nanoflowers rooted agarose hydrogel platform for point-of-care detection of acetylcholine. ACS Applied Materials & Interfaces 11 (12):11857–64. doi:10.1021/acsami.8b21571.
  • Larrouy-Maumus, G., A. Clements, A. Filloux, R. R. McCarthy, and S. Mostowy. 2016. Direct detection of lipid A on intact Gram-negative bacteria by MALDI-TOF mass spectrometry. Journal of Microbiological Methods 120:68–71. doi:10.1016/j.mimet.2015.12.004.
  • Liu, D., S. Jia, H. Zhang, Y. Ma, Z. Guan, J. Li, Z. Zhu, T. Ji, and C. J. Yang. 2017. Integrating target-responsive hydrogel with pressuremeter readout enables simple, sensitive, user-friendly, quantitative point-of-care testing. ACS Applied Materials & Interfaces 9 (27):22252–8. doi:10.1021/acsami.7b05531.
  • Liu, D., T. Tian, X. Chen, Z. Lei, Y. Song, Y. Shi, T. Ji, Z. Zhu, L. Yang, and C. Yang. 2018. Gas-generating reactions for point-of-care testing. The Analyst 143 (6):1294–304. doi:10.1039/c8an00011e.
  • Ma, X., Z. Wang, S. He, C. Chen, F. Luo, L. Guo, B. Qiu, Z. Lin, G. Chen, and G. Hong. 2019. Development of an immunosensor based on the exothermic reaction between H2O and CaO using a common thermometer as readout. ACS Sensors 4 (9):2375–80. doi:10.1021/acssensors.9b00968.
  • Majdinasab, M., A. Hayat, and J. L. Marty. 2018. Aptamer-based assays and aptasensors for detection of pathogenic bacteria in food samples. TrAC Trends in Analytical Chemistry 107:60–77. doi:10.1016/j.trac.2018.07.016.
  • Memon, A. H., R. Ding, Q. Yuan, Y. Wei, and H. Liang. 2019. Facile synthesis of alcalase-inorganic hybrid nanoflowers used for soy protein isolate hydrolysis to improve its functional properties. Food Chemistry 289:568–74. doi:10.1016/j.foodchem.2019.03.096.
  • Nayak, S., N. R. Blumenfeld, T. Laksanasopin, and S. K. Sia. 2017. Point-of-care diagnostics: Recent developments in a connected age. Analytical Chemistry 89 (1):102–23. doi:10.1021/acs.analchem.6b04630.
  • Peng, W. K., L. Chen, and J. Han. 2012. Development of miniaturized, portable magnetic resonance relaxometry system for point-of-care medical diagnosis. The Review of Scientific Instruments 83 (9):095115. doi:10.1063/1.4754296.
  • Rubab, M., H. M. Shahbaz, A. N. Olaimat, and D. H. Oh. 2018. Biosensors for rapid and sensitive detection of Staphylococcus aureus in food. Biosensors & Bioelectronics 105:49–57. doi:10.1016/j.bios.2018.01.023.
  • Shan, Y., C. Xu, M. Wang, Z. Zhu, F.-G. Wu, Z. Shi, Q. Cui, and G. M. Arumugam. 2019. Bilinear Staphylococcus aureus detection based on suspension immunoassay. Talanta 192:154–9. doi:10.1016/j.talanta.2018.09.027.
  • Sun, Y., N. Duan, P. Ma, Y. Liang, X. Zhu, and Z. Wang. 2019. Colorimetric aptasensor based on truncated aptamer and trivalent DNAzyme for Vibrio parahemolyticus determination. Journal of Agricultural and Food Chemistry 67 (8):2313–20. doi:10.1021/acs.jafc.8b06893.
  • Teng, J., F. Yuan, Y. Ye, L. Zheng, L. Yao, F. Xue, W. Chen, and B. Li. 2016. Aptamer-based technologies in foodborne pathogen detection. Frontiers in Microbiology 7, 1426. doi:10.3389/fmicb.2016.01426.
  • Wang, C., K. Xing, G. Zhang, M. Yuan, S. Xu, D. Liu, W. Chen, J. Peng, S. Hu, and W. H. Lai. 2019. Novel ELISA based on fluorescent quenching of DNA-stabilized silver nanoclusters for detecting E. coli O157:H7. Food Chemistry 281:91–96. doi:10.1016/j.foodchem.2018.12.079.
  • Wang, K. Y., S. J. Bu, C. J. Ju, Y. Han, C. Y. Ma, W. S. Liu, Z. Y. Li, C. T. Li, and J. Y. Wan. 2019. Disposable syringe-based visual immunotest for pathogenic bacteria based on the catalase mimicking activity of platinum nanoparticle-concanavalin A hybrid nanoflowers. Microchimica Acta 186 (2), 57. doi:10.1007/s00604-018-3133-7.
  • Wang, S., L. Zheng, G. Cai, N. Liu, M. Liao, Y. Li, X. Zhang, and J. Lin. 2019. A microfluidic biosensor for online and sensitive detection of Salmonella typhimurium using fluorescence labeling and smartphone video processing. Biosensors & Bioelectronics 140:111333. doi:10.1016/j.bios.2019.
  • Wu, J., R. Wang, Y. Lu, M. Jia, J. Yan, and X. Bian. 2019. Facile preparation of a bacteria imprinted artificial receptor for highly-selective bacterial recognition and label-free impedimetric detection. Analytical Chemistry 91 (1):1027–33. doi:10.1021/acs.analchem.8b04314.
  • Yuan, J., S. Wu, N. Duan, X. Ma, Y. Xia, J. Chen, Z. Ding, and Z. Wang. 2014. A sensitive gold nanoparticle-based colorimetric aptasensor for Staphylococcus aureus. Talanta 127:163–8. doi:10.1016/j.talanta.2014.04.013.
  • Zhao, M., J. Rong, J. Han, Y. Zhou, C. Li, L. Wang, and Y. Wang. 2019. Novel synthesis strategy for biocatalyst: Fast purification and immobilization of His- and ELP-tagged enzyme from fermentation broth. ACS Applied Materials and Interfaces 11(35), 31878-31888. doi:10.1021/acsami.9b09071.
  • Zhao, Z., R. Yan, X. Yi, J. Li, J. Rao, Z. Guo, Y. Yang, W. Li, Y.-Q. Li, and C. Chen. 2017. Bacteria-activated theranostic nanoprobes against methicillin-resistant Staphylococcus aureus infection. ACS Nano 11 (5):4428–38. doi:10.1021/acsnano.7b00041.
  • Zhang, Y., C. Tan, R. Fei, X. Liu, Y. Zhou, J. Chen, H. Chen, R. Zhou, and Y. Hu. 2014. Sensitive chemiluminescence immunoassay for E. coli O157:H7 detection with signal dual-amplification using glucose oxidase and laccase. Analytical Chemistry 86 (2):1115–22. doi:10.1021/ac4028774.
  • Zhang, Y., C. Yan, H. Yang, J. Yu, and H. Wei. 2017. Rapid and selective detection of E. coli O157:H7 combining phagomagnetic separation with enzymatic colorimetry. Food Chemistry 234:332–8. doi:10.1016/j.foodchem.2017.05.013.
  • Zhu, Z., Z. Guan, D. Liu, S. Jia, J. Li, Z. Lei, S. Lin, T. Ji, Z. Tian, and C. J. Yang. 2015. Translating molecular recognition into a pressure signal to enable rapid, sensitive, and portable biomedical analysis. Angewandte Chemie (International ed. in English) 54 (36):10448–53. doi:10.1002/anie.201503963.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.