184
Views
5
CrossRef citations to date
0
Altmetric
Atomic Spectroscopy

Salt-Assisted Bulk Liquid Membrane and Flame Atomic Absorption Spectrometry for the Separation and Determination of Chromium(VI)

, &
Pages 1729-1745 | Received 24 Jul 2020, Accepted 07 Sep 2020, Published online: 21 Sep 2020

References

  • Agreda, D. E., I. G. Diaz, F. A. López, and F. J. Alguacil. 2011. Supported liquid membranes technologies in metals removal from liquid effluents. Revista de Metalurgia 47 (2):146–68. doi:10.3989/revmetalmadrid.1062.
  • Almeida, J. C., C. E. D. Cardoso, D. S. Tavares, R. Freitas, T. Trindade, C. Vale, and E. Pereira. 2019. Chromium removal from contaminated waters using nanomaterials - A review. Trac Trends in Analytical Chemistry 118:277–91. doi:10.1016/j.trac.2019.05.005.
  • Anthemidis, A. N., G. A. Zachariadis, J. S. Kougoulis, and J. A. Stratis. 2002. Flame atomic absorption spectrometric determination of chromium(VI) by on-line preconcentration system using a PTFE packed column. Talanta 57 (1):15–22. doi:10.1016/S0039-9140(01)00676-2.
  • Bahadır, Z., N. B. Volkan, O. Duygu, D. Celal, B. Hakan, and S. Mustafa. 2014. Separation and preconcentration of lead, chromium and copper by using with the combination coprecipitation-flame atomic absorption spectrometric determination. Journal of Industrial and Engineering Chemistry 20 (3):1030–4. doi:10.1016/j.jiec.2013.06.039.
  • Bahadir, Z., V. N. Bulut, M. Hidalgo, M. Soylak, and E. Marguí. 2015. Determination of trace amounts of hexavalent chromium in drinking waters by dispersive microsolid-phase extraction using modified multiwalled carbon nanotubes combined with total reflection X-ray fluorescence spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy 107:170–7. doi:10.1016/j.sab.2015.03.010.
  • Baylan, N., and S. Çehreli. 2019. Removal of acetic acid from aqueous solutions using bulk ionic liquid membranes: A transport and experimental design study. Separation and Purification Technology 224:51–61. doi:10.1016/j.seppur.2019.05.001.
  • Baylan, N., S. Çehreli, and N. Özparlak. 2017. Transport and separation of carboxylic acids through bulk liquid membranes containing tributylamine. Journal of Dispersion Science and Technology 38 (6):895–900. doi:10.1080/01932691.2016.1214841.
  • Belachew, N., and H. Hinsene. 2020. Preparation of cationic surfactant-modified kaolin for enhancedadsorption of hexavalent chromium from aqueous solution. Applied Water Science 10 (1):1–8. doi:10.1007/s13201-019-1121-7.
  • Belova, V. V., A. E. Kostanyan, Y. A. Zakhodyaeva, A. I. Kholkin, and O. A. Logutenko. 2014. On the application of bulk-supported liquid membrane techniques in hydrometallurgy. Hydrometallurgy 150:144–52. doi:10.1016/j.hydromet.2014.10.011.
  • Béni, Á., R. Karosi, and J. Posta. 2007. Speciation of hexavalent chromium in waters by liquid-liquid extraction and GFAAS determination. Microchemical Journal 85 (1):103–8. doi:10.1016/j.microc.2006.05.004.
  • Branco, L. C., J. G. Crespo, and C. A. Afonso. 2008. Ionic liquids as an efficient bulk membrane for the selective transport of organic compounds. Journal of Physical Organic Chemistry 21 (7-8):718–23. doi:10.1002/poc.1381.
  • Candela, A. M., V. Benatti, and C. Palet. 2013. Pre-concentration of Uranium(VI) using bulk liquid and supported liquid membrane systems optimized containing bis(2-ethylhexyl)phosphoric acid as carrier in low concentrations. Separation and Purification Technology 120:172–9. doi:10.1016/j.seppur.2013.09.047.
  • Catalani, S., J. Fostinelli, M. E. Gilberti, and P. Apostoli. 2015. Application of a metal free high performance liquid chromatography with inductively coupled plasma mass spectrometry (HPLC–ICP-MS) for the determination of chromium species in drinking and tap water. International Journal of Mass Spectrometry 387:31–7. doi:10.1016/j.ijms.2015.06.015.
  • Chakraborty, M., and H. J. Bart. 2007. Highly selective and efficient transport of toluene in bulk ionic liquid membranes containing Ag+ as carrier. Fuel Processing Technology 88 (1):43–9. doi:10.1016/j.fuproc.2006.08.004.
  • Chen, L., J. Zhang, Y. Zhu, and Y. Zhang. 2018. Interaction of chromium(III) or chromium(VI) with catalase and its effect on the structure and function of catalase: An in vitro study. Food Chemistry 244:378–85. doi:10.1016/j.foodchem.2017.10.062.
  • Chwastowska, J., W. Skwara, E. Sterlińska, and L. Pszonicki. 2005. Speciation of chromium in mineral waters and salinas by solid-phase extraction and graphite furnace atomic absorption spectrometry. Talanta 66 (5):1345–9. doi:10.1016/j.talanta.2005.01.055.
  • Dalali, N., H. Yavarizadeh, and Y. K. Agrawal. 2012. Separation of zinc and cadmium from nickel and cobalt by facilitated transport through bulk liquid membrane using trioctyl methyl ammonium chloride as carrier. Journal of Industrial and Engineering Chemistry 18 (3):1001–5. doi:10.1016/j.jiec.2011.11.151.
  • Gallios, G. P., and M. Vaclavikova. 2008. Removal of chromium (VI) from water streams: A thermodynamic study. Environmental Chemistry Letters 6 (4):235–40. doi:10.1007/s10311-007-0128-8.
  • Gerardo, L., and M. A. Guzmán. 2005. Kinetic study of the effect of carrier and stripping agent concentrations on the facilitated transport of cobalt through bulk liquid membranes. Desalination 184 (1-3):79–87. doi:10.1016/j.desal.2005.03.067.
  • Gil, R. A., S. Cerutti, J. A. Gásquez, R. A. Olsina, and L. D. Martinez. 2005. On-line preconcentration and determination of chromium in parenteral solutions by inductively coupled plasma optical emission spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy 60 (4):531–5. doi:10.1016/j.sab.2005.02.008.
  • Han, A., H. Zhang, J. Sun, G.-K. Chuah, and S. Jaenicke. 2017. Investigation into bulk liquid membranes for removal of chromium(VI) from simulated waste water. Journal of Water Process Engineering 17:63–9. doi:10.1016/j.jwpe.2017.01.011.
  • Liang, P., and H. Sang. 2008. Speciation of chromium in water samples with cloud point extraction separation and preconcentration and determination by graphite furnace atomic absorption spectrometry. Journal of Hazardous Materials 154 (1-3):1115–9. doi:10.1016/j.jhazmat.2007.11.017.
  • Liang, P., T. Shi, H. Lu, Z. Jiang, and B. Hu. 2003. Speciation of Cr(III) and Cr(VI) by nanometer titanium dioxide micro-column and inductively coupled plasma atomic emission spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy 58 (9):1709–14. doi:10.1016/S0584-8547(03)00136-8.
  • López-López, J. A., C. Mendiguchía, J. J. Pinto, and C. Moreno. 2010. Liquid membranes for quantification and speciation of trace metals in natural waters. Trac Trends in Analytical Chemistry 29 (7):645–53. doi:10.1016/j.trac.2010.01.007.
  • Majidi, B., and F. Shemirani. 2012. Salt-assisted liquid-liquid microextraction of Cr(VI) ion using an ionic liquid for preconcentration prior to its determination by flame atomic absorption spectrometry. Microchimica Acta 176 (1-2):143–51. doi:10.1007/s00604-011-0711-3.
  • Miretzky, P., and A. F. Cirelli. 2010. Cr(VI) and Cr(III) removal from aqueous solution by raw and modified lignocellulosic materials: A review. Journal of Hazardous Materials 180 (1-3):1–19. doi:10.1016/j.jhazmat.2010.04.060.
  • Muthuraman, G., T. T. Teng, C. P. Leh, and I. Norli. 2009. Use of bulk liquid membrane for the removal of chromium (VI) from aqueous acidic solution with tri-n-butyl phosphate as a carrier. Desalination 249 (2):884–90. doi:10.1016/j.desal.2009.09.008.
  • Nezhadali, A., R. Mohammadi, and M. Mojarrab. 2019. An overview on pollutants removal from aqueous solutions via bulk liquid membranes (BLMs): Parameters that influence the effectiveness, selectivity and transport kinetic. Journal of Environmental Chemical Engineering 7 (5):103339. doi:10.1016/j.jece.2019.103339.
  • Padarauskas, A. V., and L. G. Kazlauskiene. 1993. Ion-pair chromatographic determination of chromium(VI)). Talanta 40 (6):827–30. doi:10.1016/0039-9140(93)80037-R.
  • Saf, A. Ö., S. Alpaydin, and A. Sirit. 2006. Transport kinetics of chromium(VI) ions through a bulk liquid membrane containing p-tert-butyl calix[4]arene 3-morpholino propyl diamide derivative. Journal of Membrane Science 283 (1-2):448–55. doi:10.1016/j.memsci.2006.07.023.
  • Sahmoune, A., and M. Lynda. 2004. Extraction and transport of chromium(VI) through a bulk liquid membrane containing triphenylphosphine. Annali di Chimica 94 (12):929–38. doi:10.1002/adic.200490115.
  • Sógor, C., A. Gáspár, and J. Posta. 1998. Flame Atomic Absorption Spectrometric Determination of Total Chromium and Cr(VI) in Cigarette Ash and Smoke using Flow Injection/Hydraulic High-Pressure Sample Introduction. Microchemical Journal 58 (3):251–5. doi:10.1006/mchj.1997.1552.
  • Stanislawska, M., B. Janasik, and W. Wasowicz. 2013. Application of high performance liquid chromatography with inductively coupled plasma mass spectrometry (HPLC-ICP-MS) for determination of chromium compounds in the air at the workplace. Talanta 117:14–9. doi:10.1016/j.talanta.2013.07.082.
  • World Health Organization (WHO1996. ). Chromium in drinking-water, guidelines for drinking water quality fourth edition Health Criteria and Other Supporting Information 2nd ed., World Health Organization, Geneva.
  • Yilmaz, A., A. Kaya, H. K. Alpoguz, M. Ersoz, and M. Yilmaz. 2008. Kinetic analysis of chromium(VI) ions transport through a bulk liquid membrane containing p-tert-butylcalix[4]arene dioxaoctylamide derivative. Separation and Purification Technology 59 (1):1–8. doi:10.1016/j.seppur.2007.05.017.
  • Zhitkovich, A. 2005. Importance of Chromium-DNA Adducts in Mutagenicity and Toxicity of Chromium(VI). Chemical Research in Toxicology 18 (1):3–11. doi:10.1021/tx049774+.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.