237
Views
5
CrossRef citations to date
0
Altmetric
Nanotechnology

Preparation of Copper Oxide Nanoparticles as a Novel Adsorbent for the Isolation of Tartaric Acid

, , &
Pages 2113-2125 | Received 21 Sep 2020, Accepted 22 Oct 2020, Published online: 10 Nov 2020

References

  • Al-Aoh, H. A., I. A. Mihaina, M. A. Alsharif, A. Darwish, M. Rashad, S. K. Mustafa, M. M. Aljohani, M. A. Al-Duais, and H. Al-Shehri. 2019. Removal of methylene blue from synthetic wastewater by the selected metallic oxides nanoparticles adsorbent: Equilibrium, kinetic and thermodynamic studies. Chemical Engineering Communications 207:1719–35. 10.1080/00986445.2019.1680366.
  • Baylan, N. 2020. Removal of levulinic acid from aqueous solutions by clay nano-adsorbents: Equilibrium, kinetic, and thermodynamic data. Biomass Conversion and Biorefinery doi:10.1007/s13399-020-00744-8.
  • Baylan, N., İ. İlalan, and İ. İnci. 2020. Copper oxide nanoparticles as a novel adsorbent for separation of acrylic acid from aqueous solution: Synthesis, characterization, and application. Water Air and Soil Pollution 231:1–15. doi:10.1007/s11270-020-04832-3..
  • Chandrashekar, K., P. A. Felse, and T. Panda. 1999. Optimization of temperature and initial pH and kinetic analysis of tartaric acid production by Gluconobacter suboxydans. Bioprocess Engineering 20 (3):203–7. 10.1007/s004490050582.
  • Dada, A., A. Olalekan, A. Olatunya, and O. Dada. 2012. Langmuir, Freundlich, Temkin and Dubinin–Radushkevich isotherms studies of equilibrium sorption of Zn2+ unto phosphoric acid modified rice husk. IOSR Journal of Applied Chemistry 3:38–45. doi:10.9790/5736-0313845.
  • De, B., K. Wasewar, V. Dhongde, and P. Sontakke. 2018. Recovery of acrylic acid using calcium peroxide nanoparticles: Thermodynamics and continuous column study. Chemical and Biochemical Engineering Quarterly 32 (1):19–28. doi:10.15255/CABEQ.2016.1055a.
  • El-Trass, A., H. ElShamy, I. El-Mehasseb, and M. El-Kemary. 2012. CuO nanoparticles: Synthesis, characterization, optical properties and interaction with amino acids. Applied Surface Science 258 (7):2997–3001. doi:10.1016/j.apsusc.2011.11.025..
  • Fakhri, A. 2014. Assessment of Ethidium bromide and Ethidium monoazide bromide removal from aqueous matrices by adsorption on cupric oxide nanoparticles. Ecotoxicology and Environmental Safety 104:386–92. doi:10.1016/j.ecoenv.2013.12.017.
  • Farghali, A., M. Bahgat, A. E. Allah, and M. Khedr. 2013. Adsorption of Pb (II) ions from aqueous solutions using copper oxide nanostructures. Beni-Suef University Journal of Basic and Applied Sciences 2 (2):61–71. doi:10.1016/j.bjbas.2013.01.001.
  • Ganta, D., C. Guzman, K. Combrink, and M. Fuentes. 2020. Adsorption and removal of thymol from water using a zeolite imidazolate framework-8 nanomaterial. Analytical Letters 1–12. doi:10.1080/00032719.2020.1774601..
  • Ghareib, M., W. Abdallah, M. Tahon, and A. Tallima. 2019. Biosynthesis of copper oxide nanoparticles using the preformed biomass of Aspergillus Fumigatus and their antibacterial and photocatalytic activities. Digest Journal of Nanomaterials and Biostructures 14:291–303. http://www.chalcogen.ro/291_GhareibM.pdf
  • Gomdje, V. H., S. P. M. Kombo, and B. Loura. 2015. Adsorption of tartaric acid onto bentonite. A kinetic study. Journal of Pharmaceutics and Nanotechnology 3:37–47. https://www.rroij.com/open-access/adsorption-of-tartaric-acid-onto-bentonite-a-kinetic-study.pdf
  • Goswami, A., P. Raul, and M. Purkait. 2012. Arsenic adsorption using copper (II) oxide nanoparticles. Chemical Engineering Research and Design 90 (9):1387–96. 10.1016/j.cherd.2011.12.006.
  • Gupta, V. K., R. Chandra, I. Tyagi, and M. Verma. 2016. Removal of hexavalent chromium ions using CuO nanoparticles for water purification applications. Journal of Colloid and Interface Science 478:54–62. doi:10.1016/j.jcis.2016.05.064..
  • Hassan, K. H., A. A. Jarullah, and S. K. Saadi. 2017. Synthesis of copper oxide nanoparticle as an adsorbent for removal of Cd (II) and Ni (II) ions from binary system. International Journal of Applied Environmental Sciences 12:1841–61. http://www.ripublication.com/ijaes17/ijaesv12n11_02.pdf
  • Hosseini, R., M. H. Sayadi, and H. Shekari. 2019. Adsorption of nickel and chromium from aqueous solutions using copper oxide nanoparticles: Adsorption isotherms, kinetic modeling, and thermodynamic studies. Avicenna Journal of Environmental Health Engineering 6 (2):66–74. doi:10.34172/ajehe.2019.09.
  • Kaláb, J., and Z. Palatý. 2012. Electrodialysis of tartaric acid: Batch process modelling. Separation Science and Technology 47:2262–72. doi:10.1080/01496395.2012.673042..
  • Kaya, C., A. Şahbaz, Ö. Arar, Ü. Yüksel, and M. Yüksel. 2015. Removal of tartaric acid by gel and macroporous ion-exchange resins. Desalination and Water Treatment 55 (2):514–21. doi:10.1080/19443994.2014.919239.
  • Kontogiannopoulos, K. N., S. I. Patsios, and A. J. Karabelas. 2016. Tartaric acid recovery from winery lees using cation exchange resin: Optimization by response surface methodology. Separation and Purification Technology 165:32–41. doi:10.1016/j.seppur.2016.03.040.
  • Lan, X., P. Liang, and Y. Yang. 2013. Adsorption of tartaric acid–cadmium complex by imprinted chitosan biopolymer. Desalination and Water Treatment 51 (19–21):3883–8. doi:10.1080/19443994.2013.782089.
  • Madan, S. S., K. L. Wasewar, and C. R. Kumar. 2016. Adsorption kinetics, thermodynamics, and equilibrium of α-toluic acid onto calcium peroxide nanoparticles. Advanced Powder Technology 27 (5):2112–20. doi:10.1016/j.apt.2016.07.024..
  • Marchitan, N., C. Cojocaru, A. Mereuta, G. Duca, I. Cretescu, and M. Gonta. 2010. Modeling and optimization of tartaric acid reactive extraction from aqueous solutions: A comparison between response surface methodology and artificial neural network. Separation and Purification Technology 75 (3):273–85. doi:10.1016/j.seppur.2010.08.016.
  • Mekatel, E. H., S. Amokrane, A. Aid, D. Nibou, and M. Trari. 2015. Adsorption of methyl orange on nanoparticles of a synthetic zeolite NaA/CuO. Comptes Rendus Chimie 18 (3):336–44. doi:10.1016/j.crci.2014.09.009.
  • Oniscu, C., A. Mereuta, D. Cascaval, and G. Duca. 2002. Selective separation of organic oxyacids from aqueous phase by reactive extraction. Romanian Biotechnological Letters 7:933–40. https://e-repository.org/rbl/vol.7/iss.5/8.pdf
  • Raul, P. K., S. Senapati, A. K. Sahoo, I. M. Umlong, R. R. Devi, A. J. Thakur, and V. Veer. 2014. CuO nanorods: A potential and efficient adsorbent in water purification. RSC Advances 4 (76):40580–7. doi:10.1039/C4RA04619F.
  • Reddy, K., K. McDonald, and H. King. 2013. A novel arsenic removal process for water using cupric oxide nanoparticles. Journal of Colloid and Interface Science 397:96–102. doi:10.1016/j.jcis.2013.01.041.
  • Rita, A., A. Sivakumar, and S. M. B. Dhas. 2019. Influence of shock waves on structural and morphological properties of copper oxide NPs for aerospace applications. Journal of Nanostructure in Chemistry 9 (3):225–30. doi:10.1007/s40097-019-00313-0.
  • Shan, X. Q, J. Lian, and B. Wen. 2002. Effect of organic acids on adsorption and desorption of rare earth elements. Chemosphere 47 (7):701–10. doi:10.1016/S0045-6535(02)00032-2.
  • Singh, S., N. Kumar, M. Kumar, A. Agarwal, and B. Mizaikoff. 2017. Electrochemical sensing and remediation of 4-nitrophenol using bio-synthesized copper oxide nanoparticles. Chemical Engineering Journal 313:283–92. doi:10.1016/j.cej.2016.12.049.
  • Sivaraj, R., P. K. Rahman, P. Rajiv, H. A. Salam, and R. Venckatesh. 2014. Biogenic copper oxide nanoparticles synthesis using Tabernaemontana divaricate leaf extract and its antibacterial activity against urinary tract pathogen. Spectrochimica Acta Part A, Molecular and Biomolecular Spectroscopy 133:178–81. doi:10.1016/j.saa.2014.05.048.
  • Sundar, S., G. Venkatachalam, and S. J. Kwon. 2018. Biosynthesis of copper oxide (CuO) nanowires and their use for the electrochemical sensing of dopamine. Nanomaterials 8 (10):823. doi:10.3390/nano8100823.
  • Sundrarajan, M., and S. Gowri. 2011. Green synthesis of titanium dioxide nanoparticles by Nyctanthes arbor-tristis leaves extract. Chalcogenide Letters 8:447–51. http://www.chalcogen.ro/447_Sundrarajan.pdf
  • Taman, R., M. Ossman, M. Mansour, and H. Farag. 2015. Metal oxide nano-particles as an adsorbent for removal of heavy metals. Journal of Advanced Chemical Engineering 5 (3):1–8. doi:10.4172/2090-4568.1000125.
  • Uslu, H., and İ. İnci, 2009. Adsorption equilibria of l-(+)-tartaric acid onto alumina. Journal of Chemical & Engineering Data 54 (7):1997–2001. doi:10.1021/je800976d.
  • Uslu, H., İ. İnci, Ş. S. Bayazit, and G. Demir, 2009. Comparison of solid − liquid equilibrium data for the adsorption of propionic acid and tartaric acid from aqueous solution onto Amberlite IRA-67. Industrial & Engineering Chemistry Research 48 (16):7767–72. doi:10.1021/ie9005639.
  • Zhang, K., M. Wang, D. Wang, and C. Gao. 2009. The energy-saving production of tartaric acid using ion exchange resin-filling bipolar membrane electrodialysis. Journal of Membrane Science 341 (1–2):246–51. doi:10.1016/j.memsci.2009.06.010.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.