279
Views
8
CrossRef citations to date
0
Altmetric
Spectroscopy

Phytochemical Screening of the Different Cultivars of Ixora Flowers by Non-Destructive, Label-Free, and Rapid Spectroscopic Techniques

, , , , , , , & show all
Pages 2276-2292 | Received 18 Oct 2020, Accepted 21 Nov 2020, Published online: 10 Dec 2020

References

  • Ahmed, S. S. Z., S. Z. A. Khader, K. Radhakrishnan, V. Marimuthu, M. Chinnusamy, V. Thangavel, K. Ravi, and M. Vetrivel. 2019. Antiobesity and antihyperlipidemic effect of Ixora Coccinea on triton X-100 induced hyperlipidemia in rats: An approach to evaluate asymmetrical temperature distribution analysis using thermography. Chinese Herbal Medicines 11 (3):326–31. doi: 10.1016/j.chmed.2019.05.006.
  • Andreeva, A., and M. Velitchkova. 2005. Resonance Raman spectroscopy of carotenoids in photosystem I particles. Biophysical Chemistry 114 (2–3):129–35. doi: 10.1016/j.bpc.2004.11.012.
  • Atanasov, A. G., B. Waltenberger, E. P. Wenzig, T. Linder, C. Wawrosch, P. Uhrin, V. Temml, L. Wang, S. Schwaiger, E. H. Heiss, et al. 2015. Discovery and resupply of pharmacologically active plant-derived natural products: A review. Biotechnology Advances 33 (8):1582–614. doi: 10.1016/j.biotechadv.2015.08.001.
  • Boyaci, I. H., H. T. Temiz, H. E. Geniş, E. A. Soykut, N. N. Yazgan, B. Güven, R. S. Uysal, A. G. Bozkurt, K. İlaslan, O. Torun, et al. 2015. Dispersive and FT-Raman spectroscopic methods in food analysis. RSC Advances 5 (70):56606–24. doi: 10.1039/C4RA12463D.
  • Butler, H. J., M. R. McAinsh, S. Adams, and F. L. Martin. 2015. Application of vibrational spectroscopy techniques to non-destructively monitor plant health and development. Analytical Methods 7 (10):4059–378. doi: 10.1039/C5AY00377F.
  • Carvalho, D. G., J. A. Sebben, N. F. de Moura, J. O. Trierweiler, and J. S. Espindola. 2019. Raman spectroscopy for monitoring carotenoids in processed Bunchosia glandulifera pulps. Food Chemistry 294:565–71. doi: 10.1016/j.foodchem.2019.04.120.
  • Chaovanalikit, A., M. M. Thompson, and R. E. Wrolstad. 2004. Characterization and quantification of anthocyanins and polyphenolics in bluehHoneysuckle (Lonicera caerulea L.). Journal of Agricultural and Food Chemistry 52 (4):848–52. doi: 10.1021/jf030509o.
  • Eggersdorfer, M., and A. Wyss. 2018. Carotenoids in human nutrition and health. Archives of Biochemistry and Biophysics 652:18–26. doi: 10.1016/j.abb.2018.06.001.
  • Ermakov, I. V., M. Sharifzadeh, M. Ermakova, and W. Gellermann. 2005. Resonance Raman detection of carotenoid antioxidants in living human tissue. Journal of Biomedical Optics 10 (6):064028. doi: 10.1117/1.2139974.
  • Fiedor, J., and K. Burda. 2014. Potential role of carotenoids as antioxidants in human health and disease. Nutrients 6 (2):466–88. doi: 10.3390/nu6020466.
  • Guzmán, E., V. Baeten, J. A. F. Pierna, and J. A. García-Mesa. 2015. Determination of the olive maturity index of intact fruits using image analysis. Journal of Food Science and Technology 52 (3):1462–70. doi: 10.1007/s13197-013-1123-7.
  • Hao, Z., S. Liu, L. Hu, J. Shi, and J. Chen. 2020. Transcriptome analysis and metabolic profiling reveal the key role of carotenoids in the petal coloration of Liriodendron tulipifera. Horticulture Research 7:70. doi: 10.1038/s41438-020-0287-3.
  • Heredia-Guerrero, J. A., J. J. Benítez, E. Domínguez, I. S. Bayer, R. Cingolani, A. Athanassiou, and A. Heredia. 2014. Infrared and Raman spectroscopic features of plant cuticles: A review. Frontiers in Plant Science 5:305. doi: 10.3389/fpls.2014.00305.
  • Hoensch, H. P., and R. Oertel. 2015. The value of flavonoids for the human nutrition: Short review and perspectives. Clinical Nutrition Experimental 3:8–14. doi: 10.1016/j.yclnex.2015.09.001.
  • Horiue, H., M. Sasaki, Y. Yoshikawa, M. Toyofuku, and S. Shigeto. 2020. Raman spectroscopic signatures of carotenoids and polyenes enable label-free visualization of microbial distributions within pink biofilms. Scientific Reports 10 (1):7704. doi: 10.1038/s41598-020-64737-3.
  • Jehlička, J., H. G. M. Edwards, K. Osterrothová, J. Novotná, L. Nedbalová, J. Kopecký, I. Němec, and A. Oren. 2014. Potential and limits of Raman spectroscopy for carotenoid detection in microorganisms: Implications for astrobiology. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 372 (2030):20140199. doi: 10.1098/rsta.2014.0199.
  • Koyama, Y., Y. Umemoto, A. Akamatsu, K. Uehara, and M. Tanaka. 1986. Raman spectra of chlorophyll forms. Journal of Molecular Structure 146:273–87. doi: 10.1016/0022-2860(86)80299-X.
  • Lila, M. A. 2004. Anthocyanins and human health: An in vitro investigative approach. Journal of Biomedicine & Biotechnology 2004 (5):306–13. doi: 10.1155/S111072430440401X.
  • Luan-Mei, L. U., L. Jin-Shui, and X. Zhi-Ming. 2010. Effects of different preservative solution on cut flowers of Ixora chinensis. Acta Horticulturae Sinica 37:1351–6.
  • Manley, M. 2014. Near-infrared spectroscopy and hyperspectral imaging: Non-destructive analysis of biological materials. Chemical Society Reviews 43 (24):8200–14. doi: 10.1039/c4cs00062e.
  • Martin, D., J. Marques, A. M. Amado, M. J. Barroca, A. M. Silva, L. A. E. B. Carvalho, and M. P. M. Marques. 2020. Shedding light into the health-beneficial properties of Corema album—A vibrational spectroscopy study. Journal of Raman Spectroscopy 51 (2):313–22. doi: 10.1002/jrs.5775.
  • Merlin, J. C. 1985. Resonance Raman spectroscopy of carotenoids and carotenoid containing systems. Pure and Applied Chemistry 57 (5):785–92. doi: 10.1351/pac198557050785.
  • Merzlyak, M. N., T. B. Melø, and K. R. Naqvi. 2008. Effect of anthocyanins, carotenoids, and flavonols on chlorophyll fluorescence excitation spectra in apple fruit: Signature analysis, assessment, modelling, and relevance to photoprotection. Journal of Experimental Botany 59 (2):349–59. doi: 10.1093/jxb/erm316.
  • Momin, F., S. Shaikh, N. Khan, R. Joshi, T. Shikalgar, and N. Naikwade. 2011. Cardioprotective effect of Ixora Coccinea Linn. flower extract on doxorubicin induced cardiomyopathy in rats. Pharmacologyonline 3:1145–58.
  • Nayak, B. S., A. L. Udupa, and S. L. Udupa. 1999. Effect of ixora coccinea flowers on dead space wound healing in rats. Fitoterapia 70 (3):233–6. doi: 10.1016/S0367-326X(99)00025-8.
  • Obledo-Vázquez, E. N., and J. Cervantes-Martínez. 2017. Laser-induced fluorescence spectral analysis of papaya fruits at different stages of ripening. Applied Optics 56 (6):1753–6. doi: 10.1364/AO.56.001753.
  • Ojeda, C. B., and F. S. Rojas. 2009. Process analytical chemistry: Applications of ultraviolet/visible spectrometry in environmental analysis: An overview. Applied Spectroscopy Reviews 44 (3):245–65. doi: 10.1080/05704920902717898.
  • Oliveira, V. E., H. V. Castro, H. G. M. Edwards, L. Fernando, and C. de Oliveira. 2009. Carotenes and carotenoids in natural biological samples: A Raman spectroscopic analysis. Journal of Raman Spectroscopy 41 (6):642–50. doi: 10.1002/jrs.2493.
  • Oleszkiewicz, T., M. Z. Pacia, E. Grzebelus, and R. Baranski. 2020. Light microscopy and Raman imaging of carotenoids in plant cells in situ and in released carotene crystals. Methods in Molecular Biology (Clifton, N.J.) 2083:245–60. doi: 10.1007/978-1-4939-9952-1_19.
  • Patil, C. A., I. J. Pence, C. A. Lieber, and A. Mahadevan-Jansen. 2014. 1064  nm dispersive Raman spectroscopy of tissues with strong near-infrared autofluorescence. Optics Letters 39 (2):303–6. doi: 10.1364/OL.39.000303.
  • Patle, T. K., K. Shrivas, R. Kurrey, S. Upadhyay, R. Jangde, and R. Chauhan. 2020. Phytochemical screening and determination of phenolics and flavonoids in Dillenia pentagyna using UV–vis and FTIR spectroscopy. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 242:118717. doi: 10.1016/j.saa.2020.118717.
  • Petroni, K., R. Pilu, and C. Tonelli. 2014. Anthocyanins in corn: A wealth of genes for human health. Planta 240 (5):901–11. doi: 10.1007/s00425-014-2131-1.
  • Power, A. C., J. Chapman, S. Chandra, and D. Cozzolino. 2019. Ultraviolet-visible spectroscopy for food quality analysis, evaluation technologies for food quality, woodhead publishing series in food science. Technology and Nutrition 91–104.
  • Ranulfi, A. C., M. C. B. Cardinali, T. M. K. Kubota, J. Freitas-Astúa, E. J. Ferreira, B. S. Bellete, M. F. G. F. da Silva, P. R. V. Boas, A. B. Magalhães, and D. M. B. P. Milori. 2016. Laser-induced fluorescence spectroscopy applied to early diagnosis of citrus Huanglongbing. Biosystems Engineering 144:133–44. doi: 10.1016/j.biosystemseng.2016.02.010.
  • Rao, A. V., and L. G. Rao. 2007. Carotenoids and human health. Pharmacological Research 55 (3):207–16. doi: 10.1016/j.phrs.2007.01.012.
  • Robert, B. 2009. Resonance Raman spectroscopy. Photosynthesis Research 101 (2–3):147–55. doi: 10.1007/s11120-009-9440-4.
  • Roberts, J., A. Power, J. Chapman, S. Chandra, and D. Cozzolino. 2018. The use of UV-Vis spectroscopy in bioprocess and fermentation monitoring. Fermentation 4:18. 10.3390/fermentation4010018.
  • Rygula, A., and P. Miskowiec. 2014. Chemometric analysis of Raman and IR spectra of natural dyes. In Optical spectroscopy and computational methods in biology and medicine. Challenges and advances in computational chemistry and physics, ed. M. Baranska, vol. 14. Dordrecht: Springer. doi: 10.1007/978-94-007-7832-0_10.
  • Schulz, H., and M. Baranska. 2007. Identification and quantification of valuable plant substances by IR and Raman spectroscopy. Vibrational Spectroscopy 43 (1):13–25. doi: 10.1016/j.vibspec.2006.06.001.
  • Schulz, H., M. Baranska, and R. Baranski. 2005. Potential of NIR-FT-Raman spectroscopy in natural carotenoid analysis. Biopolymers 77 (4):212–21. doi: 10.1002/bip.20215.
  • Sharma, S., A. S. Bharti, R. Singh, and K. N. Uttam. 2019. Non-destructive phenotyping of chili pepper ripening using spectroscopic probes: A potential approach for shelf-life measurement. Analytical Letters 52 (10):1590–613. doi: 10.1080/00032719.2018.1558231.
  • Sharma, S., R. Uttam, A. S. Bharti, N. Shukla, and K. N. Uttam. 2019. Label-free mapping of the biochemicals in tomato fruit by confocal Raman microspectroscopy. National Academy Science Letters 42 (4):365–8. doi: 10.1007/s40009-018-0747-6.
  • Sharma, S., S. Srivastava, R. Singh, and K. N. Uttam. 2017. Label-free and rapid spectroscopic evaluation of ripening of Syzygium cumini fruit. Spectroscopy Letters 50 (2):115–23. doi: 10.1080/00387010.2017.1296871.
  • Sun, T., H. Yuan, H. Cao, M. Yazdani, Y. Tadmor, and L. Li. 2018. Carotenoid metabolism in plants: The role of plastids. Molecular Plant 11 (1):58–74. doi: 10.1016/j.molp.2017.09.010.
  • Tripathi, A., C. Baran, A. Jaiswal, A. Awasthi, R. Uttam, S. Sharma, A. S. Bharti, R. Singh, and K. N. Uttam. 2020. Investigating the carotenogenesis process in papaya fruits during maturity and ripening by non-destructive spectroscopic probes. Analytical Letters 53 (18):2903–20. doi: 10.1080/00032719.2020.1760874.
  • Wiercigroch, E., E. Szafraniec, K. Czamara, M. Z. Pacia, K. Majzner, K. Kochan, A. Kaczor, M. Baranska, and K. Malek. 2017. Raman and infrared spectroscopy of carbohydrates: A review. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 185:317–35. doi: 10.1016/j.saa.2017.05.045.
  • Welch, C. R., Q. Wu, and J. E. Simon. 2008. Recent advances in anthocyanin analysis and characterization. Current Analytical Chemistry 4 (2):75–101. doi: 10.2174/157341108784587795.
  • Wulf, J. S., S. Rühmann, I. Rego, I. Puhl, D. Treutter, and M. Zude. 2008. Nondestructive application of laser-induced fluorescence spectroscopy for quantitative analyses of phenolic compounds in strawberry fruits (Fragaria x ananassa). Journal of Agricultural and Food Chemistry 56 (9):2875–82. doi: 10.1021/jf072495i.
  • Zhang, H., J. Huang, T. Li, X. Wu, S. Svanberg, and K. Svanberg. 2014. Studies of tropical fruit ripening using three different spectroscopic techniques. Journal of Biomedical Optics 19 (6):067001. doi: 10.1117/1.JBO.19.6.067001.
  • Zhang, L., Y. Liu, Y. Wang, M. Xu, and X. Hu. 2018. UV-Vis spectroscopy combined with chemometric study on the interactions of three dietary flavonoids with copper ions. Food Chemistry 263:208–15. doi: 10.1016/j.foodchem.2018.05.009.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.