247
Views
4
CrossRef citations to date
0
Altmetric
Atomic Spectroscopy

Photochemical Vapor Generation Based Accurate Determination of Cadmium in Wastewater Using Novel Photoreactor and Gas-Liquid Separators Using Flame Atomic Absorption Spectrometry with Matrix Matching Calibration

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 2315-2326 | Received 09 Oct 2020, Accepted 28 Nov 2020, Published online: 11 Dec 2020

References

  • Alves, F. L., S. Cadore, W. F. Jardim, and M. A. Z. Arruda. 2001. River sediment analysis by slurry sampling FAAS: Determination of copper, zinc and lead. Journal of the Brazilian Chemical Society 12 (6):799–803. doi:10.1590/S0103-50532001000600018.
  • Alves, V. N., R. Mosquetta, N. M. M. Coelho, J. N. Bianchin, K. C. D. P. Roux, E. Martendal, and E. Carasek. 2010. Determination of cadmium in alcohol fuel using Moringa oleifera seeds as a biosorbent in an on-line system coupled to FAAS. Talanta 80 (3):1133–8. doi:10.1016/J.TALANTA.2009.08.040.
  • Ataman, O. Y. 2008. Vapor generation and atom traps: Atomic absorption spectrometry at the Ng/L level. Spectrochimica Acta Part B: Atomic Spectroscopy 63 (8):825–34. doi:10.1016/j.sab.2008.03.013.
  • Baghban, N., E. Yilmaz, and M. Soylak. 2017. A magnetic MoS2-Fe3O4 nanocomposite as an effective adsorbent for dispersive solid-phase microextraction of lead(II) and copper(II) prior to their determination by FAAS. Microchimica Acta 184 (10):3969–76. doi:10.1007/s00604-017-2384-z.
  • Bakırdere, S. 2020. Determination of Pb, Cd, Ni, Co at trace levels by ultraviolet photochemical volatile compounds generation-atom trap-flame atomic absorption spectrometry system. The Scientific and Technological Research Council of Turkey (TÜBİTAK) with a grant number of 117Z380.
  • Bilal, M., T. G. Kazi, H. I. Afridi, M. B. Arain, J. A. Baig, M. Khan, and N. Khan. 2016. Application of conventional and modified cloud point extraction for simultaneous enrichment of cadmium, lead and copper in lake water and fish muscles. Journal of Industrial and Engineering Chemistry 40:137–44. doi:10.1016/j.jiec.2016.06.015.
  • Büyükpınar, Ç., N. San, O. T. Komesli, and S. Bakırdere. 2019. Accurate, sensitive, and precise determination of cobalt in soil matrices by the combination of batch type gas-liquid separator-assisted photochemical vapor generation and atomic absorption spectrophotometry. Environmental Monitoring and Assessment 191 (5): 313. doi:10.1007/s10661-019-7486-0.
  • Cambier, S., P. Gonzalez, G. Durrieu, and J. Bourdineaud. 2010. Cadmium-induced genotoxicity in zebrafish at environmentally relevant doses. Ecotoxicology and Environmental Safety 73 (3):312–9. doi:10.1016/j.ecoenv.2009.10.012.
  • Ciftci, H. 2010. Separation and solid phase extraction method for the determination of cadmium in environmental samples. Desalination 263 (1–3):18–22. doi:10.1016/j.desal.2010.06.028.
  • Ciftci, H., A. Dayangac, A. Ozkaya, B. S. Cevrimli, R. Erdag, A. Olcucu, and S. Ates. 2011. Multi-element determination of macro and trace elements in kidney of DMBA and linalool applied guinea pigs by inductively-coupled plasma atomic emission spectrometry (ICP-AES). Fresenius Environmental Bulletin 20 (3): 818–822.
  • de Jesus, A., R. E. Sturgeon, J. Liu, and M. M. Silva. 2014. Determination of mercury in gasoline by photochemical vapor generation coupled to graphite furnace atomic absorption spectrometry. Microchemical Journal 117:100–5. doi:10.1016/j.microc.2014.06.001.
  • de S. Dias, F., M. E. P. A. Guarino, A. L. Costa Pereira, P. P. Pedra, M. de A. Bezerra, and S. G. Marchetti. 2019. Optimization of magnetic solid phase microextraction with CoFe2O4 nanoparticles unmodified for preconcentration of cadmium in environmental samples by flame atomic absorption spectrometry. Microchemical Journal 146:1095–101. doi:10.1016/j.microc.2019.02.005.
  • Grinyer, J., S. H. Byun, and D. R. Chettle. 2005. In vivo prompt gamma neutron activation analysis of cadmium in the kidney and liver. Applied Radiation and Isotopes 63 (4):475–9. doi:10.1016/j.apradiso.2005.05.046.
  • Guo, X., R. E. Sturgeon, Z. Mester, and G. J. Gardner. 2004. Vapor generation by UV irradiation for sample introduction with atomic spectrometry. Analytical Chemistry 76 (8):2401–5. doi:10.1021/ac0353536.
  • Kumar, A. R., and P. Riyazuddin. 2010. Chemical interferences in hydride-generation atomic spectrometry. TrAC Trends in Analytical Chemistry 29 (2):166–76. doi:10.1016/j.trac.2009.12.002.
  • Lazanas, A. C., K. Tsirka, A. S. Paipetis, and M. I. Prodromidis. 2020. 2D bismuthene/graphene modified electrodes for the ultra-sensitive stripping voltammetric determination of lead and cadmium. Electrochimica Acta 336:135726. doi:10.1016/j.electacta.2020.135726.
  • Liu, H., K. Liu, H. Fu, R. Ji, and X. Qu. 2020. Sunlight mediated cadmium release from colored microplastics containing cadmium pigment in aqueous phase. Environmental Pollution (Barking, Essex : 1987) 263 (Pt A):114484. doi:10.1016/j.envpol.2020.114484.
  • Matusiewicz, H., and M. Ślachciński. 2013. Ultrasonic nebulization/UV photolysis vapor generation sample introduction system for the determination of conventional hydride (As, Bi, Sb, Se, Sn) and cold vapor (Hg, Cd) generation elements in reference materials in the presence of acetic acid by micro. Spectroscopy Letters 46 (5):315–26. doi:10.1080/00387010.2012.725702.
  • Medvedev, N. S., O. V. Lundovskaya, and A. I. Saprykin. 2019. Direct analysis of high-purity cadmium by electrothermal vaporization-inductively coupled plasma optical emission spectrometry. Microchemical Journal 145:751–5. doi:10.1016/j.microc.2018.11.014.
  • Meira, L. A., F., and F. de Souza Dias. 2017. Application of constrained mixture design and Doehlert matrix in the optimization of dispersive liquid-liquid microextraction assisted by ultrasound for preconcentration and determination of cadmium in sediment and water samples by FAAS. Microchemical Journal 130:56–63. doi:10.1016/j.microc.2016.07.013.
  • Naeemullah, M. Tuzen. 2019. A new robust, deep eutectic-based floating organic droplets microextraction method for determination of lead in a portable syringe system directly couple with FAAS. Talanta 196:71–7. doi:10.1016/j.talanta.2018.12.027.
  • Nóbrega, J. A., R. E. Sturgeon, P. Grinberg, G. J. Gardner, C. S. Brophy, and E. E. Garcia. 2011. UV photochemical generation of volatile cadmium species. Journal of Analytical Atomic Spectrometry 26 (12):2519–23. doi:10.1039/c1ja10252d.
  • Nordberg, G. F., K. Nogawa, and M. Nordberg. 2015. Chapter 32 - Cadmium. In Handbook on the toxicology of metals, ed. G. F. Nordberg, B. A. Fowler, and M. Nordberg, 4th ed., Academic Press, United States, 667–716. doi:10.1016/B978-0-444-59453-2.00032-9.
  • Nováková, E., K. Horová, V. Červený, J. Hraníček, and S. Musil. 2020. UV photochemical vapor generation of Cd from a formic acid based medium: Optimization, efficiency and interferences. Journal of Analytical Atomic Spectrometry 35 (7):1380–8. doi:10.1039/D0JA00086H.
  • Ojeda, C. B., F. S. Rojas, and J. M. C. Pavón. 2010. Preconcentration of cadmium in environmental samples by cloud point extraction and determination by FAAS. American Journal of Analytical Chemistry 01 (03):127–34. doi:10.4236/ajac.2010.13016.
  • Pinot, F., S. E. Kreps, M. Bachelet, P. Hainaut, M. Bakonyi, and B. S. Polla. 2000. Cadmium in the environment: Sources. Reviews on Environmental Health 15 (3):299–323. doi:10.1515/REVEH.2000.15.3.299.
  • Pourjavid, M. R., M. Arabieh, S. R. Yousefi, M. R. Jamali, M. Rezaee, M. H. Hosseini, and A. A. Sehat. 2015. Study on column SPE with synthesized graphene oxide and FAAS for determination of trace amount of Co(II) and Ni(II) ions in real samples. Materials Science and Engineering C, 47:114–22. doi:10.1016/j.msec.2014.11.028.
  • Rosa, F. C., F. A. Duarte, J. N. G. Paniz, G. M. Heidrich, M. A. G. Nunes, E. M. M. Flores, and V. L. Dressler. 2015. Dispersive liquid-liquid microextraction: An efficient approach for the extraction of Cd and Pb from honey and determination by flame atomic absorption spectrometry. Microchemical Journal 123:211–7. doi:10.1016/j.microc.2015.06.009.
  • Schneider, M., É. R. Pereira, D. P. C. de Quadros, B. Welz, E. Carasek, J. B. de Andrade, J. del, C. Menoyo, and J. Feldmann. 2017. Investigation of chemical modifiers for the determination of cadmium and chromium in fish oil and lipoid matrices using HR-CS GF AAS and a simple ‘dilute-and-shoot’ approach. Microchemical Journal 133:175–81. doi:10.1016/j.microc.2017.03.038.
  • Shanmugaraj, B. M., A. Malla, and S. Ramalingam. 2019. Chapter 1 - Cadmium stress and toxicity in plants: An overview. In Cadmium toxicity and tolerance in plants, ed. M. Hasanuzzaman, M. N. V. Prasad, and M. Fujita, Academic Press, United States, 1–17. doi:10.1016/B978-0-12-814864-8.00001-2.
  • Stanisz, E., M. Krawczyk, and H. Matusiewicz. 2014. Solid-phase extraction with multiwalled carbon nanotubes prior to photochemical generation of cadmium coupled to high-resolution continuum source atomic absorption spectrometry. Journal of Analytical Atomic Spectrometry 29 (12):2388–97. doi:10.1039/C4JA00278D.
  • Sturgeon, R. E., and P. Grinberg. 2012. Some speculations on the mechanisms of photochemical vapor generation. Journal of Analytical Atomic Spectrometry 27 (2):222–31. doi:10.1039/C2JA10249H.
  • Tan, Q., Y. Pan, L. Liu, S. Shu, and Y. Liu. 2019. Determination of ultratrace tellurium in water by hydride generation atomic absorption spectrometry using online separation and pre-concentration with nano-TiO2 microcolumn. Microchemical Journal 144:495–9. doi:10.1016/j.microc.2018.09.034.
  • Watling, R. J. 1977. The use of a slotted quartz tube for the determination 0f arsenic, antimony, selenium and mercury. Analytica Chimica Acta 94 (1):181–6. doi:10.1016/S0003-2670(01)83645-X.
  • Welz, B., and S. Michael. 1999. Atomic absorption spectrometry. 3rd ed. Wiley-VCH, Germany.
  • Ya, J., X. Li, L. Wang, H. Kou, H. Wang, and H. Zhao. 2020. The effects of chronic cadmium exposure on the gut of Bufo Gargarizans larvae at metamorphic climax: Histopathological impairments, microbiota changes and intestinal remodeling disruption. Ecotoxicology and Environmental Safety 195:110523. doi:10.1016/j.ecoenv.2020.110523.
  • Zhang, H., and M. Reynolds. 2019. Cadmium exposure in living organisms: A short review. Science of the Total Environment 678:761–7. doi:10.1016/j.scitotenv.2019.04.395.
  • Zhang, N., K. Shen, X. Yang, Z. Li, T. Zhou, Y. Zhang, Q. Sheng, and J. Zheng. 2018. Simultaneous determination of arsenic, cadmium and lead in plant foods by ICP-MS combined with automated focused infrared ashing and cold trap. Food Chemistry 264:462–70. doi:10.1016/J.FOODCHEM.2018.05.058.
  • Zheng, C., L. Yang, R. E. Sturgeon, and X. Hou. 2010. UV photochemical vapor generation sample introduction for determination of Ni, Fe, and Se in biological tissue by isotope dilution ICPMS. Analytical Chemistry 82 (9):3899–904. doi:10.1021/ac1004376.
  • Zheng, C., R. E. Sturgeon, and X. Hou. 2009. UV photochemical vapor generation and in situ preconcentration for determination of ultra-trace nickel by flow injection graphite furnace atomic absorption spectrometry. Journal of Analytical Atomic Spectrometry 24 (10):1452–8. doi:10.1039/b909962j.
  • Zhou, J., D. Deng, Y. Su, and Y. Lv. 2019. Determination of total inorganic arsenic in water samples by cadmium ion assisted photochemical vapor generation-atomic fluorescence spectrometry. Microchemical Journal 146:359–65. doi:10.1016/j.microc.2019.01.022.
  • Zhu, J., K. Hong, X. Shen, Y. Gan, F. Tian, J. Zhao, H. Zhang, Q. Zhai, and W. Chen. 2020. A new method for evaluating the bioaccessibility of different foodborne forms of cadmium. Toxicology Letters 319:31–9. doi:10.1016/j.toxlet.2019.11.002.
  • Zou, Z., J. Hu, F. Xu, X. Hou, and X. Jiang. 2019. Nanomaterials for photochemical vapor generation-analytical atomic spectrometry. TrAC Trends in Analytical Chemistry 114:242–50. doi:10.1016/j.trac.2019.03.012.
  • Zou, Z., X. Jiang, L. Li, Q. Yao, H. Luo, and K. Huang. 2020. Photochemical vapor generation of selenium: Mechanisms and applications. Trends in Environmental Analytical Chemistry 27:e00094. doi:10.1016/j.teac.2020.e00094.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.