414
Views
4
CrossRef citations to date
0
Altmetric
Immunoassay

On-Site Determination of Classical Swine Fever Virus (CSFV) by a Fluorescent Microsphere-Based Lateral Flow Immunoassay Strip (FM-LFIAs) Based on Monoclonal Antibodies

, ORCID Icon, , , , , , & show all
Pages 2347-2362 | Received 15 Aug 2020, Accepted 04 Dec 2020, Published online: 16 Dec 2020

References

  • Chen, H., X. Zhang, Z. Jin, L. Huang, H. Dan, W. Xiao, J. Liang, S. Zou, and Y. Tang. 2020. Differential diagnosis of PRV-infected versus vaccinated pigs using a novel EuNPs-virus antigen probe-based blocking fluorescent lateral flow immunoassay. Biosensors & Bioelectronics 155:112101 doi:10.1016/j.bios.2020.112101.
  • Cheng, T.-C., C.-H. Pan, C.-S. Chen, K.-H. Chuang, C.-H. Chuang, C.-C. Huang, Y.-Y. Chu, Y.-C. Yang, P.-Y. Chu, C.-H. Kao, et al. 2015. Direct coating of culture medium from cells secreting classical swine fever virus E2 antigen on ELISA plates for detection of E2-specific antibodies. Vet J 205 (1):107–9. doi:10.1016/j.tvjl.2015.02.007.
  • Depner, K. R., A. Rodriguez, J. Pohlenz, and B. Liess. 1996. 1996. Persistent classical swine fever virus infection in pigs infected after weaning with a virus isolated during the 1995 epidemic in Germany: Clinical, virological, serological and pathological findings. European Journal of Veterinary Pathology Official Journal of the European Society of Veterinary Pathology 2 (2):61–6.
  • Dewulf, J., F. Koenen, K. Mintiens, P. Denis, S. Ribbens, and A. D. Kruif. 2004. Analytical performance of several classical swine fever laboratory diagnostic techniques on live animals for detection of infection. Journal of Virological Methods 119 (2):137–43. doi:10.1016/j.jviromet.2004.03.010.
  • Ding, Y., X. Hua, H. Chen, G. Gonzalez-Sapienza, B. Barnych, F. Liu, M. Wang, and B. D. Hammock. 2019. A dual signal immunochromatographic strip for the detection of imidaclothiz using a recombinant fluorescent-peptide tracer and gold nanoparticles. Sensors and Actuators B: Chemical 297:126714–7. doi:10.1016/j.snb.2019.126714.
  • Edwards, S., A. Fukusho, P. C. Lefèvre, A. Lipowski, Z. Pejsak, P. Roehe, and J. Westergaard. 2000. Classical swine fever: The global situation. Veterinary Microbiology 73 (2-3):103–19. doi:10.1016/S0378-1135(00)00138-3.
  • Gong, X. Q., J. Cai, B. Zhang, Q. Zhao, J. F. Piao, W. P. Peng, W. C. Gao, D. M. Zhou, M. Zhao, and J. Chang. 2017. A review of fluorescent signal-based lateral flow immunochromatographic strips. Journal of Materials Chemistry. B 5 (26):5079–91. doi:10.1039/C7TB01049D.
  • Goryacheva, O. A., C. Guhrenz, K. Schneider, N. V. Beloglazova, I. Y. Goryacheva, S. D. Saeger, and N. Gaponik. 2020. Silanized luminescent quantum dots for the simultaneous multicolor lateral flow immunoassay of two mycotoxins. ACS Applied Materials & Interfaces 12 (22):24575–84. doi:10.1021/acsami.0c05099.
  • Hanson, R. 1957. Origin of hog cholera. Journal of the American Veterinary Medical Association 131 (5):211–8.
  • Hu, L. M., K. Luo, J. Xia, G. M. Xu, C. H. Wu, J. J. Han, G. G. Zhang, M. Liu, and W. H. Lai. 2017. Advantages of time-resolved fluorescent nanobeads compared with fluorescent submicrospheres, quantum dots, and colloidal gold as label in lateral flow assays for detection of ractopamine. Biosensors & Bioelectronics 91:95–103. doi:10.1016/j.bios.2016.12.030.
  • Li, W., L. Mao, L. Yang, B. Zhou, and J. Jiang. 2013. Development and partial validation of a recombinant E2-based indirect ELISA for detection of specific IgM antibody responses against classical swine fever virus. Journal of Virological Methods 191 (1):63–8. doi:10.1016/j.jviromet.2013.03.003.
  • Li, X., H. Bian, S. Yu, W. Xiao, J. Shen, C. Lan, K. Zhou, C. Huang, L. Wang, D. Du, et al. 2018. A rapid method for antigen-specific Hybridoma clone isolation. Analytical Chemistry 90 (3):2224–9. doi:10.1021/acs.analchem.7b04595.
  • Lou, D., L. Fan, Y. Ji, N. Gu, and Y. Zhang. 2019. A signal amplifying fluorescent nanoprobe and lateral flow assay for ultrasensitive detection of cardiac biomarker troponin I. Analytical Methods 11 (28):3506–13. doi:10.1039/C9AY01039D.
  • Lung, O., J. Pasick, M. Fisher, C. Buchanan, A. Erickson, and A. Ambagala. 2016. Insulated isothermal reverse transcriptase PCR (ii RT‐PCR) for rapid and sensitive detection of classical swine fever virus. Transboundary and Emerging Diseases 63 (5):e395–402. doi:10.1111/tbed.12318.
  • Luo, Y., S. Li, Y. Sun, and H.-J. Qiu. 2014. Classical swine fever in China: A minireview. Veterinary Microbiology 172 (1-2):1–6. doi:10.1016/j.vetmic.2014.04.004.
  • Moennig, V. 2000. Introduction to classical swine fever: Virus, disease and control policy. Veterinary Microbiology 73 (2-3):93–102. doi:10.1016/S0378-1135(00)00137-1.
  • Nishi, T., K.-I. Kameyama, T. Kato, and K. Fukai. 2019. Genome sequence of a classical swine fever virus of subgenotype 2.1, Isolated from a pig in Japan in 2018. Microbiology Resource Announcements 8 (3):01362–18. doi:10.1128/MRA.01362-18.
  • Oirschot, J., and C. Terpstra. 1977. A congenital persistant swine fever infection. I. Clinical and virological observations. II. Immune response to swine fever virus and unrelated antigens. Veterinary Microbiology 2 (2):121–42. doi:10.1016/0378-1135(77)90003-7.
  • Panyasing, Y., R. Kedkovid, R. Thanawongnuwech, A. Kittawornrat, J. Ji, L. Giménez-Lirola, and J. Zimmerman. 2018. Effective surveillance for early classical swine fever virus detection will utilize both virus and antibody detection capabilities. Veterinary Microbiology 216:72–8. doi:10.1016/j.vetmic.2018.01.020.
  • Penrith, M. L., W. Vosloo, and C. Mather. 2011. Classical swine fever (Hog Cholera): Review of aspects relevant to control. Transboundary and Emerging Diseases 58 (3):187–96. doi:10.1111/j.1865-1682.2011.01205.x.
  • Postel, A., S. Austermann-Busch, A. Petrov, V. Moennig, and P. Becher. 2017. Epidemiology, diagnosis and control of classical swine fever: Recent developments and future challenges. Transboundary and Emerging Diseases 65:248–61. doi:10.1111/tbed.12676.
  • Raeisossadati, M. J., N. M. Danesh, F. Borna, M. Gholamzad, M. Ramezani, K. Abnous, and S. M. Taghdisi. 2016. Lateral flow based immunobiosensors for detection of food contaminants. Biosensors & Bioelectronics 86:235–46. doi:10.1016/j.bios.2016.06.061.
  • Sambandam, R., R. Angamuthu, V. Kanagaraj, K. Kathaperumal, S. K. Chothe, R. H. Nissly, R. M. Barry, B. M. Jayarao, and S. V. Kuchipudi. 2017. An immuno-chromatographic lateral flow assay (LFA) for rapid on-the-farm detection of classical swine fever virus (CSFV). Archives of Virology 162 (10):3045–50. doi:10.1007/s00705-017-3464-4.
  • Shen, H., H. Chen, Z. Cheng, L. Ma, L. Huang, M. Xiao, W. Xiao, K. Xie, and Y. Tang. 2018. A novel fluorescent immunochromatographic strip combined with pocket fluorescence observation instrument for rapid detection of PRV. Analytical and Bioanalytical Chemistry 410 (29):7655–61. doi:10.1007/s00216-018-1379-x.
  • Singh, V. K., K. K. Rajak, A. Kumar, and S. K. Yadav. 2018. Classical swine fever in India: Current status and future perspective. Tropical Animal Health and Production 50 (6):1181–91. doi:10.1007/s11250-018-1608-5.
  • Tan, G., Y. Zhao, M. Wang, X. Chen, B. Wang, and Q. X. Li. 2020. Ultrasensitive quantitation of imidacloprid in vegetables by colloidal gold and time-resolved fluorescent nanobead traced lateral flow immunoassays. Food Chemistry 311:126055–7. doi:10.1016/j.foodchem.2019.126055.
  • Turner, L. W., L. N. Brown, E. A. Carbrey, W. L. Mengeling, D. H. Perella, and R. F. Solorzano. 1968. Recommended minimum standards for the isolation and identification of hog cholera by the fluorescent antibody-cell culture technique. Proceedings Annual Meeting of the United States Animal Health Association 72 (72):444.
  • Van Oirschot, J. 2003. Vaccinology of classical swine fever: From lab to field. Veterinary Microbiology 96 (4):367–84. doi:10.1016/j.vetmic.2003.09.008.
  • Vandeputte, J., and G. Chappuis. 1999. Classical swine fever: The European experience and a guide for infected areas. Revue Scientifique et Technique (International Office of Epizootics) 18 (3):638–43. doi:10.20506/rst.18.3.1192.
  • Weesendorp, E., J. Backer, A. Stegeman, and W. Loeffen. 2011. Transmission of classical swine fever virus depends on the clinical course of infection which is associated with high and low levels of virus excretion. Veterinary Microbiology 147 (3-4):262–73. doi:10.1016/j.vetmic.2010.06.032.
  • Weesendorp, E., A. Stegeman, and W. Loeffen. 2009. Dynamics of virus excretion via different routes in pigs experimentally infected with classical swine fever virus strains of high, moderate or low virulence. Veterinary Microbiology 133 (1-2):9–22. doi:10.1016/j.vetmic.2008.06.008.
  • Xiao, M., L. Huang, X. Dong, K. Xie, H. Shen, C. Huang, W. Xiao, M. Jin, and Y. Tang. 2019. Integration of a 3D-printed read-out platform with a quantum dot-based immunoassay for detection of the avian influenza A (H7N9) virus. The Analyst 144 (8):2594–603. doi:10.1039/C8AN02336K.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.