207
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Simultaneous Complexation and Microextraction Using Verbenone Hydrazone as the Ligand with Slotted Quartz Tube-Flame Atomic Absorption Spectrometry (FAAS) for the Sensitive Determination of Copper

, , ORCID Icon, & ORCID Icon
Pages 2376-2386 | Received 19 Nov 2020, Accepted 16 Dec 2020, Published online: 28 Dec 2020

References

  • Agency for Toxic Substances and Disease Registry. 2004. Public health statement for copper.
  • Babayeva, K., S. Demir, and M. Andac. 2017. A novel spectrophotometric method for the determination of copper ion by using a salophen ligand, N, N′-disalicylidene-2,3-diaminopyridine. Journal of Taibah University for Science 11 (5):808–14. doi:10.1016/j.jtusci.2017.02.001.
  • Bahar, S., and R. Zakerian. 2012. Determination of copper in human hair and tea samples after dispersive liquid-liquid microextraction based on solidification of floating organic drop (DLLME-SFO). Journal of the Brazilian Chemical Society 23 (6):1166–73. doi:10.1590/S0103-50532012000600023.
  • Barceloux, D. G. 1999. Copper. Journal of Toxicology. Clinical Toxicology 37 (2):217–30. doi:10.1081/clt-100102421.
  • Blazewicz, A., W. Dolliver, S. Sivsammye, A. Deol, R. Randhawa, G. Orlicz-Szczesna, and R. Blazewicz. 2010. Determination of cadmium, cobalt, copper, iron, manganese, and zinc in thyroid glands of patients with diagnosed nodular goitre using ion chromatography. Journal of Chromatography B 878:34–8.
  • Bulska, E., and A. Ruszczyńska. 2017. Analytical techniques for trace element determination. Physical Sciences Reviews 2 (5): 1–14. doi:10.1515/psr-2017-8002.
  • Cabon, J. Y. 2005. Improvement of direct determination of Cu and Mn in seawater by GFAAS and total elimination of the saline matrix with the use of hydrofluoric acid. Talanta 65 (2):402–7. doi:10.1016/j.talanta.2004.06.041.
  • Chen, L., X. Tian, C. Yang, Y. Li, Z. Zhou, Y. Wang, and F. Xiang. 2017. Highly selective and sensitive determination of copper ion based on a visual fluorescence method. Sensors and Actuators B: Chemical 240:66–75. doi:10.1016/j.snb.2016.08.155.
  • Erarpat, S., S. Bodur, E. Öz, and S. Bakırdere. 2019. Determination of butyltin compounds in fish and mussel samples at trace levels by vortex assisted dispersive liquid-liquid microextraction-gas chromatography mass spectrometry. Journal of Food Composition and Analysis 82:103248. doi:10.1016/j.jfca.2019.103248.
  • Farajzadeh, M. A., M. Bahram, S. Zorita, and B. G. Mehr. 2009. Optimization and application of homogeneous liquid-liquid extraction in preconcentration of copper (II) in a ternary solvent system. Journal of Hazardous Materials 161 (2-3):1535–43. doi:10.1016/j.jhazmat.2008.05.041.
  • Hassan, M., Z. Erbas, U. Alshana, and M. Soylak. 2020. Ligandless reversed-phase switchable-hydrophilicity solvent liquid–liquid microextraction combined with flame-atomic absorption spectrometry for the determination of copper in oil samples. Microchemical Journal 156:104868. doi:10.1016/j.microc.2020.104868.
  • He, Q., Z. Hu, Y. Jiang, X. Chang, Z. Tu, and L. Zhang. 2010. Preconcentration of Cu(II), Fe(III) and Pb(II) with 2-((2-aminoethylamino)methyl)phenol-functionalized activated carbon followed by ICP-OES determination. Journal of Hazardous Materials 175 (1-3):710–4. doi:10.1016/j.jhazmat.2009.10.067.
  • Khajeh, M., A. R. A. Moghaddam, and E. Sanchooli. 2010. Application of Doehlert design in the optimization of microwave-assisted extraction for determination of zinc and copper in cereal samples using FAAS. Food Analytical Methods 3 (3):133–7. doi:10.1007/s12161-009-9099-7.
  • Khajekar, S. T., and R. R. Deshmukh. 2017. Identification of copper content in soil: A review. International Journal of Advanced Research in Computer Science 8:1381–3.
  • Lemos, V. A., M. S. Santos, G. T. David, M. V. Maciel, and M. A. Bezerra. 2008. Development of a cloud-point extraction method for copper and nickel determination in food samples. Journal of Hazardous Materials 159 (2-3):245–51. doi:10.1016/j.jhazmat.2008.02.011.
  • Nesterkina, M., D. Barbalat, and I. Kravchenko. 2020. Design, synthesis and pharmacological profile of (−)-verbenone hydrazones. Open Chemistry 18 (1):943–50. doi:10.1515/chem-2020-0103.
  • Nunes, L. S., Barbosa, J. T. A. P. Fernandes, V. A. Lemos, W. N. Santos, M. G. Korn, M. G., and L. S. Teixeira. 2011. Multi-element determination of Cu, Fe, Ni and Zn content in vegetable oils samples by high-resolution continuum source atomic absorption spectrometry and microemulsion sample preparation. Food Chemistry 127 (2):780–3. doi:10.1016/j.foodchem.2010.12.147.
  • Ozzeybek, G., B. Alacakoc, M. Y. Kocabas, E. G. Bakirdere, D. D. Chormey, and S. Bakirdere. 2018. Trace determination of nickel in water samples by slotted quartz tube-flame atomic absorption spectrometry after dispersive assisted simultaneous complexation and extraction strategy. Environmental Monitoring and Assessment 190:498.
  • Pohl, P. 2020. A revisited FAAS method for very simple and fast determination of total concentrations of Cu, Fe, Mn and Zn in grape juices with sample preparation developed by modeling experimental design and optimization. Microchemical Journal 157:104998. doi:10.1016/j.microc.2020.104998.
  • Seidi, S., and L. Alavi. 2019. Novel and rapid deep eutectic solvent (DES) homogeneous liquid–liquid microextraction (HLLME) with flame atomic absorption spectrometry (FAAS) detection for the determination of copper in vegetables. Analytical Letters 52 (13):2092–106. doi:10.1080/00032719.2019.1598425.
  • Shrivas, K., and N. K. Jaiswal. 2013. Dispersive liquid-liquid microextraction for the determination of copper in cereals and vegetable food samples using flame atomic absorption spectrometry. Food Chemistry 141 (3):2263–8. doi:10.1016/j.foodchem.2013.04.067.
  • Siddique, N., A. Majid, M. M. Chaudhry, and M. Tufail. 2012. Determination of heavy metals in air conditioner dust using FAAS and INAA. Journal of Radioanalytical and Nuclear Chemistry 292 (1):219–27. doi:10.1007/s10967-011-1402-6.
  • Topuz, B. 2020. Simultaneous spectrometric determination of Cu(II), Co(II), and Ni(II) in pharmaceutical and environmental samples with XAD-4/DMMDTC solid-phase extraction system. Biological Trace Element Research 194 (1):295–302. doi:10.1007/s12011-019-01930-0.
  • Wang, N., H. Dai, D. Wang, H. Ma, and M. Lin. 2017. Determination of copper ions using a phytic acid/polypyrrole nanowires modified glassy carbon electrode. Materials Science & Engineering. C, Materials for Biological Applications 76:139–43. doi:10.1016/j.msec.2017.03.077.
  • World Health Organization. 2004. Copper in drinking-water.
  • Yoon, J. H., J. E. Yang, J. P. Kim, J. S. Bae, Y. B. Shim, and M. S. Won. 2010. Simultaneous detection of Cd (II), Pb (II), Cu (II), and Hg (II) ions in dye waste water using a boron doped diamond electrode with DPASV. Bulletin of the Korean Chemical Society 31 (1):140–5. doi:10.5012/bkcs.2010.31.01.140.
  • Zamzow, H., K. H. Coale, K. S. Johnson, and C. M. Sakamoto. 1998. Determination of copper complexation in seawater using flow injection analysis with chemiluminescence detection. Analytica Chimica Acta 377 (2-3):133–44. doi:10.1016/S0003-2670(98)00618-7.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.