550
Views
8
CrossRef citations to date
0
Altmetric
Liquid Chromatography

Validated High-Performance Liquid Chromatographic (HPLC) Method for the Simultaneous Quantification of 2,3-Butanediol, Glycerol, Acetoin, Ethanol, and Phosphate in Microbial Cultivations

, , , ORCID Icon, , , , & show all
Pages 2395-2410 | Received 07 Sep 2020, Accepted 23 Dec 2020, Published online: 11 Jan 2021

References

  • Amin, M., L. W. Lim, and T. Takeuchi. 2008. Determination of common inorganic anions and cations by non-suppressed ion chromatography with column switching. Journal of Chromatography A 1182 (2):169–75. doi:10.1016/j.chroma.2008.01.007.
  • Babaei, M., P. Tsapekos, M. Alvarado-Morales, M. Hosseini, S. Ebrahimi, A. Niaei, and I. Angelidaki. 2019. Valorization of organic waste with simultaneous biogas upgrading for the production of succinic acid. Biochemical Engineering Journal 147:136–45. doi:10.1016/j.bej.2019.04.012.
  • Białkowska, A. M. 2016. Strategies for efficient and economical 2,3-butanediol production: New trends in this field. World Journal of Microbiology & Biotechnology 32 (12):200. doi:10.1007/s11274-016-2161-x.
  • Cooney, C. L., D. I. C. Wang, and R. I. Mateles. 1976. Growth of Enterobacter aerogenes in a chemostat with double nutrient limitations. Applied and Environmental Microbiology 31 (1):91–8. doi:10.1128/AEM.31.1.91-98.1976.
  • Ding, Y., and S. Mou. 2002. Effects of common metal ions on the determination of anions by suppressed ion chromatography. Journal of Chromatography. A 956 (1-2):65–70. doi:10.1016/S0021-9673(01)01545-X.
  • Dobson, R., V. Gray, and K. Rumbold. 2012. Microbial utilization of crude glycerol for the production of value-added products. Journal of Industrial Microbiology & Biotechnology 39 (2):217–26. doi:10.1007/s10295-011-1038-0.
  • Du, J., X.-J. Ji, H. Huang, Z.-K. Nie, X. Ren, N. Hu, and S. Li. 2009. Simultaneous determination of glucose, xylose and metabolites in 2,3-butanediol fermentation broth by ion-exclusion liquid chromatography. Chinese Journal of Analytical Chemistry 37:681–4.
  • Erian, A. M., P. Freitag, M. Gibisch, and S. Pflügl. 2020. High rate 2,3-butanediol production with Vibrio natriegens. Bioresource Technology Reports 10:100408. doi:10.1016/j.biteb.2020.100408.
  • European Pharmacopoeia. 2016. 9th ed. Strasbourg: European Directorate for the Quality of Medicines & HealthCare (EDQM), Council of Europe.
  • Forano, C., H. Farhat, and C. Mousty. 2018. Recent trends in electrochemical detection of phosphate in actual waters. Current Opinion in Electrochemistry 11:55–61. doi:10.1016/j.coelec.2018.07.008.
  • Guo, Z. X., Q. Cai, and Z. Yang. 2005. Determination of glyphosate and phosphate in water by ion chromatography-inductively coupled plasma mass spectrometry detection. Journal of Chromatography A 1100 (2):160–7. doi:10.1016/j.chroma.2005.09.034.
  • Haberer, J. L., and J. A. Brandes. 2003. A high sensitivity, low volume HPLC method to determine soluble reactive phosphate in freshwater and saltwater. Marine Chemistry 82 (3-4):185–96. doi:10.1016/S0304-4203(03)00069-0.
  • Hakizimana, O., E. Matabaro, and B. H. Lee. 2020. The current strategies and parameters for the enhanced microbial production of 2,3-butanediol. Biotechnology Reports 25:e00397. doi:10.1016/j.btre.2019.e00397.
  • Hassan, S. E., M. A. Abdel-Rahman, M. M. Roushdy, M. S. Azab, and M. A. Gaber. 2019. Effective biorefinery approach for lactic acid production based on cofermentation of mixed organic wastes by Enterococcus durans BP130. Biocatalysis and Agricultural Biotechnology 20:101203. doi:10.1016/j.bcab.2019.101203.
  • International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use. 2005. Validation of analytical procedures: text and methodology Q2 (R1). Accessed March 08, 2020. https://www.ich.org/page/quality-guidelines.
  • Ji, X.-J., H. Huang, J. Du, J.-G. Zhu, L.-J. Ren, N. Hu, and S. Li. 2009. Enhanced 2,3-butanediol production by Klebsiella oxytoca using a two-stage agitation speed control strategy. Bioresource Technology 100 (13):3410–4. doi:10.1016/j.biortech.2009.02.031.
  • Ji, X. J., H. Huang, and P. K. Ouyang. 2011. Microbial 2,3-butanediol production: A state-of-the-art review. Biotechnology Advances 29 (3):351–64. doi:10.1016/j.biotechadv.2011.01.007.
  • Jung, J., T. Jaufmann, U. Hener, A. Munch, M. Kreck, H. Dietrich, and A. Mosandl. 2006. Progress in wine authentication: GC-C/P-IRMS measurements of glycerol and GC analysis of 2,3-butanediol stereoisomers. European Food Research and Technology 223 (6):811–20. doi:10.1007/s00217-006-0274-4.
  • Jurchescu, I. M., J. Hamann, X. Zhou, T. Ortmann, A. Kuenz, A. Prüße, and S. Lang. 2013. Enhanced 2,3-butanediol production in fed-batch cultures of free and immobilized Bacillus licheniformis DSM 8785. Applied Microbiology and Biotechnology 97 (15):6715–23. doi:10.1007/s00253-013-4981-z.
  • Kim, D. K., J. M. Park, H. Song, and Y. K. Chang. 2016. Kinetic modeling of substrate and product inhibition for 2,3-butanediol production by Klebsiella oxytoca. Biochemical Engineering Journal 114:94–100. doi:10.1016/j.bej.2016.06.021.
  • Kosamia, N. M., M. Samavi, B. K. Uprety, and S. K. Rakshit. 2020. Valorization of biodiesel byproduct crude glycerol for the production of bioenergy and biochemicals. Catalysts 10 (6):609–29. doi:10.3390/catal10060609.
  • Lee, Y., and J. Seo. 2019. Production of 2,3-butanediol from glucose and cassava hydrolysates by metabolically engineered industrial polyploid Saccharomyces cerevisiae. Biotechnology for Biofuels 12:204. doi:10.1186/s13068-019-1545-1.
  • Metsoviti, M., K. Paraskevaidi, A. Koutinas, A. Zeng, and S. Papanikolaou. 2012. Production of 1,3-propanediol, 2,3-butanediol and ethanol by a newly isolated Klebsiella oxytoca strain growing on biodiesel-derived glycerol based media. Process Biochemistry 47 (12):1872–82. doi:10.1016/j.procbio.2012.06.011.
  • Pagliano, E., B. Campanella, A. D'Ulivo, and Z. Mester. 2018. Derivatization chemistries for the determination of inorganic anions and structurally related compounds by gas chromatography – A review. Analytica Chimica Acta 1025:12–40. doi:10.1016/j.aca.2018.03.043.
  • Parpinello, G. P., and A. Versari. 2000. A simple high-performance liquid chromatography method for the analysis of glucose, glycerol, and methanol in a bioprocess. Journal of Chromatographic Science 38 (6):259–61. doi:10.1093/chromsci/38.6.259.
  • Petrov, K., and P. Petrova. 2009. High production of 2,3-butanediol from glycerol by Klebsiella pneumoniae G31. Applied Microbiology and Biotechnology 84 (4):659–65. doi:10.1007/s00253-009-2004-x.
  • Petrov, K., and P. Petrova. 2010. Enhanced production of 2,3-butanediol from glycerol by forced pH fluctuations. Applied Microbiology and Biotechnology 87 (3):943–9. doi:10.1007/s00253-010-2545-z.
  • Pirt, S. J., and D. S. Callow. 1958. Exocellular product formation by microorganisms in continuous culture. I – Production of 2,3-butanediol by Aerobacter aerogenes in a single stage process. Journal of Applied Bacteriology 21 (2):188–205. doi:10.1111/j.1365-2672.1958.tb00134.x.
  • Pradima, J., and M. R. Kulkarni. 2017. Review on enzymatic synthesis of value added products of glycerol, a by-product derived from biodiesel production. Resource-Efficient Technologies 3:394–405. doi:10.1016/j.reffit.2017.02.009.
  • Priya, A., and B. Lal. 2019. Efficient valorization of waste glycerol to 2,3-butanediol using Enterobacter cloacae TERI BD 18 as a biocatalyst. Fuel 250:292–305. doi:10.1016/j.fuel.2019.03.146.
  • Romano, P., G. Palla, A. Caligiani, V. Brandolini, A. Maietti, and G. Salzano. 2000. Evaluation of stereoisomers of 2,3-butanediol and acetoin to differentiate Saccharomyces cerevisiae and Kloeckera apiculata wine strains. Biotechnology Letters 22 (24):1947–51. doi:10.1023/A:1026741625019.
  • Romano, P., L. Granchi, M. Caruso, G. Borra, G. Palla, C. Fiore, D. Ganucci, A. Caligiani, and V. Brandolini. 2003. The species-specific ratios of 2,3-butanediol and acetoin isomers as a tool to evaluate wine yeast performance. International Journal of Food Microbiology 86 (1-2):163–8. doi:10.1016/S0168-1605(03)00254-X.
  • Ruiz-Calero, V., and M. T. Galceran. 2005. Ion chromatographic separations of phosphorus species: A review. Talanta 66 (2):376–410. doi:10.1016/j.talanta.2005.01.027.
  • Sanchez, S., and A. L. Demain. 2002. Metabolic regulation of fermentation processes. Enzyme and Microbial Technology 31 (7):895–906. doi:10.1016/S0141-0229(02)00172-2.
  • Santos, D. A., L. P. Casari, S. C. O. Lucas, L. P. C. Romão, and A. L. M. Porto. 2020. Butanediol production from glycerol and glucose by Serratia marcescens isolated from tropical peat soil. Biocatalysis and Agricultural Biotechnology 26:101615. doi:10.1016/j.bcab.2020.101615.
  • Silveira, M. M., M. A. Berbert-Molina, A. M. R. Prata, and W. Schmidell. 1998. Production of 2,3-butanediol from sucrose by Klebsiella pneumoniae NRRL B199 in batch and fed-batch reactors. Brazilian Archives of Biology and Technology 41 (3):329–34. doi:10.1590/S1516-89131998000300009.
  • Silveira, M. M., W. Schmidell, and M. A. Berbert. 1993. Effect of the air supply on the production of 2,3-butanediol by Klebsiella pneumoniae NRRL B199. Journal of Biotechnology 31 (1):93–102. doi:10.1016/0168-1656(93)90139-E.
  • Song, C. W., J. M. Park, S. C. Chung, S. Y. Lee, and H. Song. 2019. Microbial production of 2,3-butanediol for industrial applications. Journal of Industrial Microbiology & Biotechnology 46 (11):1583–601. doi:10.1007/s10295-019-02231-0.
  • Souza, B. C. 2018. Bioprodução de 2,3-butanodiol em meio mineral contendo glicerol derivado da indústria de biodiesel. Dissertação de Mestrado, Universidade de Caxias do Sul, 1–126.
  • Souza, B. C., M. G. P. Rizzotto, P. D. Adler, C. C. Bianco, S. Carra, L. L. Beal, M. M. Silveira, and E. Malvessi. 2017. Comparison among glucose, pure glycerol and crude glycerol by-product of biodiesel synthesis as substrates for the production of 2,3-butanediol by Enterobacter aerogenes. Anais do 21° Simpósio Nacional de Bioprocessos e 12° Simpósio de Hidrólise Enzimática de Biomassa, Aracaju, SE, de 03 a 06/09/2017.
  • Tan, H. W., A. R. Abdul Aziz, and M. K. Aroua. 2013. Glycerol production and its applications as a raw material: A review. Renewable and Sustainable Energy Reviews 27:118–27. doi:10.1016/j.rser.2013.06.035.
  • Tanaka, S., T. Dohi, S. Aizawa, T. Kemmei, H. Terashima, A. Taga, A. Yamamoto, and S. Kodama. 2017. Simultaneous determination of alcohols including diols and triols by HPLC with ultraviolet detection based on the formation of a copper(II) complex. Journal of Separation Science 40 (21):4168–75. doi:10.1002/jssc.201700635.
  • Ummiti, K., K. R. Chennuru, S. Vakkala, V. Dama, and M. R. Annarapu. 2013. Determination of phosphate binding capacity in sevelamer carbonate by HPLC using refractive index (RI) detector. Analytical Chemistry: A Indian Journal 13:197–204.
  • Valls-Cantenys, C., M. Iglesias, J. L. Todolí, and V. Salvadó. 2012. Speciation of phosphorus oxoacids in natural and waste water samples. Journal of Chromatography. A 1231:16–21. doi:10.1016/j.chroma.2012.01.075.
  • Vashisht, A., K. Thakur, B. S. Kauldhar, V. Kumar, and S. K. Yadav. 2019. Waste valorization: Identification of an ethanol tolerant bacterium Acetobacter pasteurianus SKYAA25 for acetic acid production from apple pomace. The Science of the Total Environment 690:956–64. doi:10.1016/j.scitotenv.2019.07.070.
  • Watanabe, E., Y. Kobara, K. Baba, and H. Eun. 2014. Aqueous acetonitrile extraction for pesticide residue analysis in agricultural products with HPLC-DAD. Food Chemistry 154:7–12. doi:10.1016/j.foodchem.2013.12.075.
  • Worsfold, P., I. McKelvie, and P. Monbet. 2016. Determination of phosphorus in natural waters: A historical review. Analytica Chimica Acta 918:8–20. doi:10.1016/j.aca.2016.02.047.
  • Yang, L., E. Pagliano, and Z. Mester. 2014. Direct determination of dissolved phosphate and silicate in seawater by ion exclusion chromatography sector field inductively coupled plasma mass spectrometry. Analytical Chemistry 86 (6):3222–6. doi:10.1021/ac5002228.
  • Zaky, A. S., N. Pensupa, A. Andrade-Eiroa, G. A. Tucker, and C. Du. 2017. A new HPLC method for simultaneously measuring chloride, sugars, organic acids and alcohols in food samples. Journal of Food Composition and Analysis 56:25–33. doi:10.1016/j.jfca.2016.12.010.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.