179
Views
2
CrossRef citations to date
0
Altmetric
Raman

Surface-Scanning Raman Characterization of Dark Materials Based on a Digital Mirror Device (DMD)

, , , & ORCID Icon
Pages 2423-2430 | Received 13 Oct 2020, Accepted 24 Dec 2020, Published online: 11 Jan 2021

References

  • Ali, E. M. A., H. G. M. Edwards, M. D. Hargreaves, and I. Scowen. 2008. In-situ detection of drugs-of-abuse on clothing using confocal Raman microscopy. Analytica Chimica Acta 615 (1):63–72. doi: 10.1016/j.aca.2008.03.051.
  • Almaviva, S., A. Palucci, S. Botti, A. Puiu, and A. Rufoloni. 2016. Validation of a miniaturized spectrometerfor trace detection of explosives by surface-enhanced Raman spectroscopy. Challenges 7 (2):14–22. doi: 10.3390/challe7020014.
  • Brown, E. 1998. RF-MEMS switches for reconfigurable integrated circuits. IEEE Transactions on Microwave Theory and Techniques 46 (11):1868–80. doi: 10.1109/22.734501.
  • Chen, J., J. Li, Y. Li, Y. Chen, and L. Xu. 2018. Design and fabrication of a miniaturized GMI magnetic sensor based on amorphous wire by MEMS technology. Sensors 18 (3):732–42. doi: 10.3390/s18030732.
  • Chen, S., X. Lin, C. Yuen, S. Padmanabhan, R. W. Beuerman, and Q. Liu. 2014. Recovery of Raman spectra with low signal-to-noise ratio using Wiener estimation. Optics Express 22 (10):12102–14. doi: 10.1364/OE.22.012102.
  • Conti, C., J. Striova, I. Aliatis, E. Possenti, G. Massonnet, C. Muehlethaler, T. Poli, and M. Positano. 2014. The detection of copper resinate pigment in works of art: Contribution from Raman spectroscopy. Journal of Raman Spectroscopy 45 (11–12):1186–96. doi: 10.1002/jrs.4455.
  • Jaafreh, S., R. Breuch, K. Günther, J. Kreyenschmidt, and P. Kaul. 2018. Rapid poultry spoilage evaluation using portable fiber-optic raman spectrometer. Food Analytical Methods 11 (8):2320–8. doi: 10.1007/s12161-018-1223-0.
  • Jehlička, J., A. Culka, L. Mana, and A. Oren. 2018. Using a portable Raman spectrometer to detect carotenoids of halophilic prokaryotes in synthetic inclusions in NaCl, KCl, and sulfates. Analytical and Bioanalytical Chemistry 410 (18):4437–43. doi: 10.1007/s00216-018-1098-3.
  • Kainz, A., H. Steiner, J. Schalko, J. Schalko, A. Jachimowicz, F. Kohl, M. Stifter, R. Beigelbeck, F. Keplinger, and W. Hortschitz. 2018. Distortion-free measurement of electric field strength with a MEMS sensor. Nature Electronics 1 (1):68–73. doi: 10.1038/s41928-017-0009-5.
  • Koch, S., K. Schutze, M. Baquie, and K. H. Krause. 2012. 1190 detection of neuronal cancer cells by Raman spectroscopy. European Journal of Cancer 48:S286–S287. doi: 10.1016/S0959-8049(12)71783-5.
  • Kondo, T., R. Hashimoto, Y. Ohrui, R. Sekioka, T. Nogami, F. Muta, and Y. Seto. 2018. Analysis of chemical warfare agents by portable Raman spectrometer with both 785 nm and 1064 nm excitation. Forensic Science International 291:23–38. doi: 10.1016/j.forsciint.2018.07.032.
  • Liu, F., Y. Wu, and F. Wu. 2015. Correction of phase extraction error in phase-shifting interferometry based on Lissajous figure and ellipse fitting technology. Optics Express 23 (8):10794–807. doi: 10.1364/oe.23.010794.
  • Mu, T., S. Li, H. Feng, C. Zhang, B. Wang, X. Ma, J. Guo, B. Huang, and L. Zhu. 2018.  High-Sensitive Smartphone-Based Raman System Based on Cloud Network Architecture. IEEE Journal of Selected Topics in Quantum Electronics 25 (1):1–6. doi:10.1109/JSTQE.2018.2832661.
  • Scholles, M., A. Brauer, K. Frommhagen, C. Gerwig, B. Hoefer, E. Jung, H. Lakner, H. Schenk, B. Schneider, P. Schreiber, and A. Wolter. 2005. Miniaturized optical module for projection of arbitrary images based on two-dimensional resonant micro scanning mirrors. SPIE 5873:72–83. doi: 10.1117/12.616779.
  • Spearing, S. M. 2000. Material issues in microelectromechanical systems (MEMS). Acta Materialia 48 (1):179–96. doi: 10.1016/S1359-6454(99)00294-3.
  • Torcal-Milla, F. J., L. M. Sanchez-Brea, and J. M. Herrera-Fernandez. 2015. Lissajous figure-based single-frame collimation technique. Sensors and Actuators A: Physical 233:259–66. doi: 10.1016/j.sna.2015.07.004.
  • Weilnhammer, V., K. Ludwig, P. Sterzer, and G. Hesselmann. 2014. Revisiting the Lissajous figure as a tool to study bistable perception. Vision Research 98:107–12. doi: 10.1016/j.visres.2014.03.013.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.