310
Views
6
CrossRef citations to date
0
Altmetric
Voltammetry

Determination of Cadmium(II) by Differential Pulse Voltammetry (DPV) Using a Cerium(IV) Oxide: Polyaniline Composite Modified Glassy Carbon Electrode (GCE)

, , &
Pages 2431-2451 | Received 27 Aug 2020, Accepted 26 Dec 2020, Published online: 15 Jan 2021

References

  • Baghayeri, M., H. Alinezhad, M. Fayazi, M. Tarahomi, R. Ghanei-Motlagh, and B. Maleki. 2019. A novel electrochemical sensor based on a glassy carbon electrode modified with dendrimer functionalized magnetic graphene oxide for simultaneous determination of trace Pb(II) and Cd(II). Electrochimica Acta 312:80–8. doi:10.1016/j.electacta.2019.04.180.
  • Bansod, B., T. Kumar, R. Thakur, S. Rana, and I. Singh. 2017. A review on various electrochemical techniques for heavy metal ions detection with different sensing platforms. Biosensors & Bioelectronics 94:443–55. doi:10.1016/j.bios.2017.03.031.
  • Bhadra, S., N. K. Singha, and D. Khastgir. 2008. Semiconductive composites from ethylene 1-octene copolymer and polyaniline coated nylon 6: Studies on mechanical, thermal, processability, electrical, and EMI shielding properties. Polymer Engineering & Science 48 (5):995–1006. doi:10.1002/pen.21025.
  • Bhanjana, G., N. Dilbaghi, R. Kumar, A. Umar, and S. Kumar. 2015. SnO2 quantum dots as novel platform for electrochemical sensing of cadmium. Electrochimica Acta 169:97–102. doi:10.1016/j.electacta.2015.04.045.
  • Bindewald, E. H., A. F. Schibelbain, M. A. P. Papi, E. G. C. Neiva, A. J. G. Zarbin, M. F. Bergamini, and L. H. Marcolino-Júnior. 2017. Design of a new nanocomposite between bismuth nanoparticles and graphene oxide for development of electrochemical sensors. Materials Science & Engineering. C, Materials for Biological Applications 79:262–9. doi:10.1016/j.msec.2017.05.033.
  • Chaudhari, S., and P. P. Patil. 2010. Inhibition of steel corrosion by electrosynthesized poly(o-anisidine)-dodecylbenzenesulfonate coatings. Electrochimica Acta 55 (22):6715–23. doi:10.1016/j.electacta.2010.05.099.
  • Chen, Y., D. Zhang, D. Wang, L. Lu, X. Wang, and G. Guo. 2019. A carbon-supported BiSn nanoparticles based novel sensor for sensitive electrochemical determination of Cd (II) ions. Talanta 202:27–33. doi:10.1016/j.talanta.2019.04.066.
  • Chu, Y., F. Gao, F. Gao, and Q. Wang. 2019. Enhanced stripping voltammetric response of Hg2+, Cu2+, Pb2+ and Cd2+ by ZIF-8 and its electrochemical analytical application. Journal of Electroanalytical Chemistry 835:293–300. doi:10.1016/j.jelechem.2019.01.053.
  • Chuang, F.-Y., and S.-M. Yang. 2008. Cerium dioxide/polyaniline core-shell nanocomposites. Journal of Colloid and Interface Science 320 (1):194–201. doi:10.1016/j.jcis.2008.01.015.
  • Deng, J., T. Wang, J. Guo, and P. Liu. 2017. Electrochemical capacity fading of polyaniline electrode in supercapacitor: An XPS analysis. Progress in Natural Science: Materials International 27 (2):257–60. doi:10.1016/j.pnsc.2017.02.007.
  • Deshmukh, S., G. Kandasamy, R. K. Upadhyay, G. Bhattacharya, D. Banerjee, D. Maity, M. A. Deshusses, and S. S. Roy. 2017. Terephthalic acid capped iron oxide nanoparticles for sensitive electrochemical detection of heavy metal ions in water. Journal of Electroanalytical Chemistry 788:91–8. doi:10.1016/j.jelechem.2017.01.064.
  • Ding, Y., X. Hao, H. Yin, I. L. Kyratzis, S. Shen, K. Sun, F. Liu, and M. M. Musameh. 2018. Ultrasensitive and selective detection of Cd(II) using ZnSe-xanthan gum complex/CNT modified electrodes. Electroanalysis 30 (5):877–85. doi:10.1002/elan.201700763.
  • Ensafi, A. A., A. Mahmoodi, and B. Rezaei. 2019. Pd@CeO2-SnO2 nanocomposite, a highly selective and sensitive hydrogen peroxide electrochemical sensor. Sensors and Actuators B: Chemical 296 (126683). doi:10.1016/j.snb.2019.126683.
  • Fan, H., H. Wang, J. Guo, N. Zhao, and J. Xu. 2014. SDBS-assisted preparation of novel polyaniline planar-structure: Morphology, mechanism and hydrophobicity. Journal of Colloid and Interface Science 414:46–9. doi:10.1016/j.jcis.2013.09.042.
  • Fang, Y., B. Cui, J. Huang, and L. Wang. 2019. Ultrasensitive electrochemical sensor for simultaneous determination of cadmium and lead ions based on one-step co-electropolymerization strategy. Sensors and Actuators B: Chemical 284:414–20. doi:10.1016/j.snb.2018.12.148.
  • Gu, J., X. Yin, X. Bo, and L. Guo. 2018. High performance electrocatalyst based on MIL-101(Cr)/reduced graphene oxide composite: Facile synthesis and electrochemical detections. ChemElectroChem 5 (19):2893–901. doi:10.1002/celc.201800588.
  • Gumpu, M. B., N. Nesakumar, S. Sethuraman, U. M. Krishnan, and J. B. B. Rayappan. 2014. Development of electrochemical biosensor with ceria–PANI core–shell nano-interface for the detection of histamine. Sensors and Actuators B: Chemical 199:330–8. doi:10.1016/j.snb.2014.04.009.
  • Han, X., Z. Meng, H. Zhang, and J. Zheng. 2018. Fullerene-based anodic stripping voltammetry for simultaneous determination of Hg(II), Cu(II), Pb(II) and Cd(II) in foodstuff. Mikrochimica Acta 185 (5):274. doi:10.1007/s00604-018-2803-9.
  • He, W., R. Ma, and D. J. Kang. 2020. High-performance, flexible planar microsupercapacitors based on crosslinked polyaniline using laser printing lithography. Carbon 161:117–22. doi:10.1016/j.carbon.2020.01.047.
  • Huang, W., Y. Zhang, Y. Li, T. Zeng, Q. Wan, and N. Yang. 2020. Morphology-controlled electrochemical sensing of environmental Cd2+ and Pb2+ ions on expanded graphite supported CeO2 nanomaterials. Analytica Chimica Acta 1126:63–71. doi:10.1016/j.aca.2020.06.010.
  • Ibrahim, N. I., and A. S. Wasfi. 2019. A comparative study of polyaniline/MWCNT with polyaniline/SWCNT nanocomposite films synthesized by microwave plasma polymerization. Synthetic Metals 250:49–54. doi:10.1016/j.synthmet.2019.02.007.
  • Jeyaranjan, A., T. S. Sakthivel, C. J. Neal, and S. Seal. 2019. Scalable ternary hierarchical microspheres composed of PANI/rGO/CeO2 for high performance supercapacitor applications. Carbon 151:192–202. doi:10.1016/j.carbon.2019.05.043.
  • Jin, W., Y. Fu, M. Hu, S. Wang, and Z. Liu. 2020. Highly efficient SnS-decorated Bi2O3 nanosheets for simultaneous electrochemical detection and removal of Cd(II) and Pb(II). Journal of Electroanalytical Chemistry 856:113744. doi:10.1016/j.jelechem.2019.113744.
  • Krishnan, A., S. Beena, and S. M. A. Shibli. 2020. A novel high performance Ti/Ti–W-reinforced polyaniline functionalized Ni–P electrode for high sensitive detection of dopamine from urine sample. Materials Chemistry and Physics 244:122680. doi:10.1016/j.matchemphys.2020.122680.
  • Kumar, E., P. Selvarajan, and D. Muthuraj. 2012. Preparation and characterization of polyaniline/cerium dioxide (CeO2) nanocomposite via in situ polymerization. Journal of Materials Science 47 (20):7148–56. doi:10.1007/s10853-012-6655-0.
  • Kumari Jangid, N., S. Jadoun, and N. Kaur. 2020. A review on high-throughput synthesis, deposition of thin films and properties of polyaniline. European Polymer Journal 125 (109485):109485. doi:10.1016/j.eurpolymj.2020.109485.
  • Li, H., G. Wang, F. Zhang, Y. Cai, Y. Wang, and I. Djerdj. 2012. Surfactant-assisted synthesis of CeO2 nanoparticles and their application in wastewater treatment. RSC Advances 2 (32):12413–23. doi:10.1039/c2ra21590j.
  • Li, Y., T. Xia, J. Zhang, Y. Cui, B. Li, Y. Yang, and G. Qian. 2019. A manganese-based metal-organic framework electrochemical sensor for highly sensitive cadmium ions detection. Journal of Solid State Chemistry 275:38–42. doi:10.1016/j.jssc.2019.03.051.
  • Mocak, J., A. M. Bond, S. Mitchell, G. Scollary, and A. M. Bond. 1997. A statistical overview of standard (IUPAC and ACS) and new procedures for determining the limits of detection and quantification: Application to voltammetric and stripping techniques. Pure and Applied Chemistry 69 (2):297–328. doi:10.1351/pac199769020297.
  • Ns, A. K., S. Ashoka, and P. Malingappa. 2018. Nano zinc ferrite modified electrode as a novel electrochemical sensing platform in simultaneous measurement of trace level lead and cadmium. Journal of Environmental Chemical Engineering 6 (6):6939–46. doi:10.1016/j.jece.2018.10.041.
  • Phoka, S., P. Laokul, E. Swatsitang, V. Promarak, S. Seraphin, and S. Maensiri. 2009. Synthesis, structural and optical properties of CeO2 nanoparticles synthesized by a simple polyvinyl pyrrolidone (PVP) solution route. Materials Chemistry and Physics 115 (1):423–8. doi:10.1016/j.matchemphys.2008.12.031.
  • Planes, G. A., G. M. Morales, M. C. Miras, and C. Barbero. 1998. A soluble and electroactive polyaniline obtained by coupling of 4-sulfobenzenediazonium ion and poly (N-methylaniline). Synthetic Metals 97 (3):223–7. doi:10.1016/S0379-6779.(98)00132-5.
  • Pournajaf, R., S. A. Hassanzadeh-Tabrizi, and M. Jafari. 2014. Reverse microemulsion synthesis of CeO2 nanopowder using polyoxyethylene(23)lauryl ether as a surfactant. Ceramics International 40 (6):8687–92. doi:10.1016/j.ceramint.2014.01.086.
  • Qiu, J. D., S. G. Cui, and R. P. Liang. 2010. Hydrogen peroxide biosensor based on the direct electrochemistry of myoglobin immobilized on ceria nanoparticles coated with multiwalled carbon nanotubesby a hydrothermal synthetic method. Microchimica Acta 171 (3–4):333–9. doi:10.1007/s00604-010-0440-z.
  • Qiu, S., M. Lu, S. Cui, Z. Wang, and S. Pu. 2019. A bifunctional sensor based on diarylethene for the colorimetric recognition of Cu2+ and fluorescence detection of Cd2+. RSC Advances 9 (50):29141–8. doi:10.1039/C9RA04965G.
  • Rui, M., Y. Jiang, and A. Zhu. 2020. Sub-micron calcium carbonate as a template for the preparation of dendrite-like PANI/CNT nanocomposites and its corrosion protection properties. Chemical Engineering Journal 385:123396. doi:10.1016/j.cej.2019.123396.
  • Sahoo, S., P. K. Sahoo, A. Sharma, and A. K. Satpati. 2020. Interfacial polymerized RGO/MnFe2O4/polyaniline fibrous nanocomposite supported glassy carbon electrode for selective and ultrasensitive detection of nitrite. Sensors and Actuators B: Chemical 309:127763. doi:10.1016/j.snb.2020.127763.
  • Savest, N., T. Plamus, K. Kütt, U. Kallavus, M. Viirsalu, E. Tarasova, V. Vassiljeva, I. Krasnou, and A. Krumme. 2018. Electrospun conductive mats from PANi-ionic liquid blends. Journal of Electrostatics 96:40–4. doi:10.1016/j.elstat.2018.09.007.
  • Shoaie, N., M. Daneshpour, M. Azimzadeh, S. Mahshid, S. M. Khoshfetrat, F. Jahanpeyma, A. Gholaminejad, K. Omidfar, and M. Foruzandeh. 2019. Electrochemical sensors and biosensors based on the use of polyaniline and its nanocomposites: A review on recent advances. Mikrochimica Acta 186 (7):465. doi:10.1007/s00604-019-3588-1.
  • Singh, M., N. Nesakumar, S. Sethuraman, U. M. Krishnan, and J. B. B. Rayappan. 2014. Electrochemical biosensor with ceria-polyaniline core shell nano-interface for the detection of carbonic acid in blood. Journal of Colloid and Interface Science 425:52–8. doi:10.1016/j.jcis.2014.03.041.
  • Song, M. J., J. H. Kim, S. K. Lee, J. H. Lee, D. S. Lim, S. W. Hwang, and D. Whang. 2010. Pt-polyaniline nanocomposite on boron-doped diamond electrode for amperometic biosensor with low detection limit. Microchimica Acta 171 (3–4):249–55. doi:10.1007/s00604-010-0432-z.
  • Terán-Baamonde, J., R.-M. Soto-Ferreiro, A. Carlosena, J.-M. Andrade, and D. Prada. 2018. Determination of cadmium in sediments by diluted HCI extraction and isotope dilution ICP-MS. Talanta 186:272–8. doi:10.1016/j.talanta.2018.04.054.
  • Tseng, R. J., J. Huang, J. Ouyang, R. B. Kaner, and Y. Yang. 2005. Polyaniline nanofiber/gold nanoparticle nonvolatile memory. Nano Letters 5 (6):1077–80. doi:10.1021/nl050587l.
  • Tsud, N., R. G. Acres, M. Iakhnenko, D. Mazur, K. C. Prince, and V. Matolín. 2013. Bonding of histidine to cerium oxide. The Journal of Physical Chemistry B 117 (31):9182–93. doi:10.1021/jp404385h.
  • Üğe, A., D. Koyuncu Zeybek, and B. Zeybek. 2018. An electrochemical sensor for sensitive detection of dopamine based on MWCNTs/CeO2-PEDOT composite. Journal of Electroanalytical Chemistry 813:134–42. doi:10.1016/j.jelechem.2018.02.028.
  • U.S. Environmental Protection Agency. 2018. 2018 Edition of the drinking water standards and health advisories. Washington, DC: U.S. Environmental Protection Agency.
  • Uzunoglu, A., and L. A. Stanciu. 2016. Novel CeO2-CuO-decorated enzymatic lactate biosensors operating in low oxygen environments. Analytica Chimica Acta 909:121–8. doi:10.1016/j.aca.2015.12.044.
  • Veerakumar, P., V. Veeramani, S.-M. Chen, R. Madhu, and S.-B. Liu. 2016. Palladium nanoparticle incorporated porous activated carbon: Electrochemical detection of toxic metal ions. ACS Applied Materials & Interfaces 8 (2):1319–26. doi:10.1021/acsami.5b10050.
  • Venkata Ramana, G., B. Padya, V. V. S. S. Srikanth, P. K. Jain, G. Padmanabham, and G. Sundararajan. 2011. Electrically conductive carbon nanopipe-graphite nanosheet/polyaniline composites. Carbon 49 (15):5239–45. doi:10.1016/j.carbon.2011.07.041.
  • Wang, J. 2006. Study of electrode reactions and interfacial properties. In Analytical electrochemistry, 29–66. New Jersey: John Wiley & Sons.
  • World Health Organization. 2017. Guidelines for drinking-water quality: fourth edition incorporating the first addendum. Geneva: World Health Organization; 2017. Licence: CC BY-NC-SA 3.0 IGO.
  • World Health Organization. 2019. Preventing disease through healthy environments: Exposure to cadmium: A major public health concern. World Health Organization: Geneva. https://apps.who.int/iris/handle/10665/329480. License: CC BY-NC-SA 3.0 IGO.
  • Xing, S., and G. Zhao. 2007. Morphology, structure, and conductivity of polypyrrole prepared in the presence of mixed surfactants in aqueous solutions. Journal of Applied Polymer Science 104 (3):1987–96. doi:10.1002/app.25912.
  • Yang, J., C. Yu, S. Liang, S. Li, H. Huang, X. Han, C. Zhao, X. Song, C. Hao, P. M. Ajayan, et al. 2016. Bridging of ultrathin NiCo2O4 nanosheets and graphene with polyaniline: A theoretical and experimental study. Chemistry of Materials 28 (16):5855–63. doi:10.1021/acs.chemmater.6b02303.
  • Yao, Y., H. Wu, and J. Ping. 2019. Simultaneous determination of Cd(II) and Pb(II) ions in honey and milk samples using a single-walled carbon nanohorns modified screen-printed electrochemical sensor. Food Chemistry 274:8–15. doi:10.1016/j.foodchem.2018.08.110.
  • Ye, W., Y. Li, J. Wang, B. Li, Y. Cui, Y. Yang, and G. Qian. 2020. Electrochemical detection of trace heavy metal ions using a Ln-MOF modified glass carbon electrode. Journal of Solid State Chemistry 281:121032. doi:10.1016/j.jssc.2019.121032.
  • Yu, L., Q. Zhang, B. Yang, Q. Xu, Q. Xu, and X. Hu. 2018. Electrochemical sensor construction based on Nafion/calcium lignosulphonate functionalized porous graphene nanocomposite and its application for simultaneous detection of trace Pb2+ and Cd2+. Sensors and Actuators B: Chemical 259:540–51. doi:10.1016/j.snb.2017.12.103.
  • Zeybek, B., N. Özçiçek Pekmez, and E. Kılıç. 2011. Electrochemical synthesis of bilayer coatings of poly(N-methylaniline) and polypyrrole on mild steel and their corrosion protection performances. Electrochimica Acta 56 (25):9277–86. doi:10.1016/j.electacta.2011.08.003.
  • Zhang, L., and M. Wan. 2002. Synthesis and characterization of self-assembled polyaniline nanotubes doped with D-10-camphorsulfonic acid. Nanotechnology 13 (6):750–5. doi:10.1088/0957-4484/13/6/311.
  • Zhang, W., K. Lin, J. Zhou, W. Zhang, L. Liu, and X. Han. 2013. Spatial distribution and toxicity of cadmium in the joint presence of sulfur in rice seedling. Environmental Toxicology and Pharmacology 36 (3):1235–41. doi:10.1016/j.etap.2013.10.007.
  • Zhou, S.-F., J.-J. Wang, L. Gan, X.-J. Han, H.-L. Fan, L.-Y. Mei, J. Huang, and Y.-Q. Liu. 2017. Individual and simultaneous electrochemical detection toward heavy metal ions based on L-cysteine modified mesoporous MnFe2O4 nanocrystal clusters. Journal of Alloys and Compounds 721:492–500. doi:10.1016/j.jallcom.2017.05.321.
  • Zvěřina, O., J. Kuta, P. Coufalík, P. Kosečková, and J. Komárek. 2019. Simultaneous determination of cadmium and iron in different kinds of cereal flakes using high-resolution continuum source atomic absorption spectrometry. Food Chemistry 298:125084. doi:10.1016/j.foodchem.2019.125084.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.