265
Views
4
CrossRef citations to date
0
Altmetric
Electrochemistry

Ratiometric Electrochemical Biosensor for the Sensitive Determination of DNA by a Hairpin DNA Probe

, , , &
Pages 2473-2483 | Received 01 Nov 2020, Accepted 29 Dec 2020, Published online: 12 Jan 2021

References

  • Beer, N. R., B. J. Hindson, E. K. Wheeler, S. B. Hall, K. A. Rose, I. M. Kennedy, and B. W. Colston. 2007. On-chip, real-time, single-copy polymerase chain reaction in picoliter droplets. Analytical Chemistry 79 (22):8471–5. doi:10.1021/ac701809w.
  • Cui, L., M. Lu, Y. Li, B. Tang, and C. Zhang. 2018. A reusable ratiometric electrochemical biosensor on the basis of the binding of methylene blue to DNA with alternating AT base sequence for sensitive detection of adenosine. Biosensors & Bioelectronics 102:87–93. doi:10.1016/j.bios.2017.11.025.
  • Cui, L., M. Lu, X. Yang, B. Tang, and C. Zhang. 2017. A sensitive ratiometric electrochemical biosensor based on DNA four-way junction formation and enzyme-assisted recycling amplification. The Analyst 142 (9):1562–8. doi:10.1039/c7an00342k.
  • Deprez, R. H. L., A. C. Fijnvandraat, J. M. Ruijter, and A. F. M. Moorman. 2002. Sensitivity and accuracy of quantitative real-time polymerase chain reaction using SYBR green I depends on cDNA synthesis conditions. Analytical Biochemistry 307 (1):63–9. doi:10.1016/S0003-2697(02)00021-0.
  • DeRisi, J. L., V. R. Iyer, and P. O. Brown. 1997. Exploring the metabolic and genetic control of gene expression on a genomic scale. Science (New York, N.Y.) 278 (5338):680–6. doi:10.1126/science.278.5338.680.
  • Fredriksson, S., M. Gullberg, J. Jarvius, C. Olsson, K. Pietras, S. M. Gústafsdóttir, A. Ostman, and U. Landegren. 2002. Protein detection using proximity-dependent DNA ligation assays. Nature Biotechnology 20 (5):473–7. doi:10.1038/nbt0502-473.
  • Han, J., Y. Zhuo, Y. Chai, Y. Xiang, and R. Yuan. 2015. New type of redox nanoprobe: C60-based nanomaterial and its application in electrochemical immunoassay for doping detection. Analytical Chemistry 87 (3):1669–75. doi:10.1021/ac503406p.
  • Jia, J., H. G. Chen, J. Feng, J. L. Lei, H. Q. Luo, and N. B. Li. 2016. A regenerative ratiometric electrochemical biosensor for selective detecting Hg2+ based on Y-shaped/hairpin DNA transformation. Analytica Chimica Acta 908:95–101. doi:10.1016/j.aca.2015.12.028.
  • Jia, X., S. Dong, and E. Wang. 2016. Engineering the bioelectrochemical interface using functional nanomaterials and microchip technique toward sensitive and portable electrochemical biosensors. Biosensors & Bioelectronics 76:80–90. doi:10.1016/j.bios.2015.05.037.
  • Ling, P., J. Lei, L. Zhang, and H. Ju. 2015. Porphyrin-Encapsulated Metal–Organic Frameworks as Mimetic Catalysts for Electrochemical DNA Sensing via Allosteric Switch of Hairpin DNA. Analytical Chemistry 87 (7):3957–63. doi:10.1021/acs.analchem.5b00001.
  • Ma, C., D. Han, M. Deng, J. Wang, and C. Shi. 2015. Single primer-triggered isothermal amplification for double-stranded DNA detection. Chemical Communications (Cambridge, England) 51 (3):553–6. doi:10.1039/c4cc07845d.
  • Ma, C., H. Jing, P. Zhang, L. Han, M. Zhang, F. Wang, S. Niu, and C. Shi. 2018. An ultrafast one-step assay for the visual detection of RNA virus. Chemical Communications (Cambridge, England) 54 (25):3118–21. doi:10.1039/c8cc00150b.
  • Ma, F., M. Liu, B. Tang, and C. Zhan. 2017. Sensitive quantification of microRNAs by isothermal helicase-dependent amplification. Analytical Chemistry 89 (11):6182–7. doi:10.1021/acs.analchem.7b01113.
  • Muralidhara, B. K., R. Baid, S. M. Bishop, M. Huang, W. Wang, and S. Nema. 2016. Critical considerations for developing nucleic acid macromolecule based drug products. Drug Discovery Today 21 (3):430–44. doi:10.1016/j.drudis.2015.11.012.
  • Narayanan, R., P. Basuri, S. K. Jana, A. Mahendranath, S. Bose, and T. Pradeep. 2019. In situ monitoring of electrochemical reactions through CNT-assisted paper cell mass spectrometry. The Analyst 144 (18):5404–12. doi:10.1039/c9an00791a.
  • Navarro, E., G. S. Heras, M. J. Castaño, and J. Solera. 2015. Real-time PCR detection chemistry. Clinica Chimica Acta; International Journal of Clinical Chemistry 439:231–50. doi:10.1016/j.cca.2014.10.017.
  • Niu, S., Y. Jiang, and S. Zhang. 2010. Fluorescence detection for DNA using hybridization chain reaction with enzyme-amplification. Chemical Communications 46 (18):3089–91. doi:10.1039/c000166j.
  • Notomi, T., H. Okayama, H. Masubuchi, T. Yonekawa, K. Watanabe, N. Amino, and T. Hase. 2000. Loop-mediated isothermal amplification of DNA. Nucleic Acids Research 28 (12):E63. doi:10.1093/nar/28.12.e63.
  • Rane, T. D., L. Chen, H. C. Zec, and T. H. Wang. 2015. Microfluidic continuous flow digital loop-mediated isothermal amplification (LAMP). Lab on a Chip 15 (3):776–82. doi:10.1039/c4lc01158a.
  • Rant, U., K. Arinaga, S. Fujita, N. Yokoyama, G. Abstreiter, and M. Tornow. 2004. Structural properties of oligonucleotide monolayers on gold surfaces probed by fluorescence investigations. Langmuir: The ACS Journal of Surfaces and Colloids 20 (23):10086–92. doi:10.1021/la0492963.
  • Rant, U., K. Arinaga, M. Tornow, Y. W. Kim, R. R. Netz, S. Fujita, N. Yokoyama, and G. Abstreiter. 2006. Dissimilar kinetic behavior of electrically manipulated single- and double-stranded DNA tethered to a gold surface. Biophysical Journal 90 (10):3666–71. doi:10.1529/biophysj.105.078857.
  • Sett, A., S. Das, and U. Bora. 2014. Functional nucleic-acid-based sensors for environmental monitoring. Applied Biochemistry and Biotechnology 174 (3):1073–91. doi:10.1007/s12010-014-0990-3.
  • Sforza, S., R. Corradini, T. Tedeschi, and R. Marchelli. 2011. Food analysis and food authentication by peptide nucleic acid (PNA)-based technologies. Chemical Society Reviews 40 (1):221–32. doi:10.1039/b907695f.
  • Shi, C., Q. Liu, C. Ma, and W. Zhong. 2014. Exponential strand-displacement amplification for detection of microRNAs. Analytical Chemistry 86 (1):336–9. doi:10.1021/ac4038043.
  • Shi, C., F. Shang, M. Zhou, P. Zhang, Y. Wang, and C. Ma. 2016. Triggered isothermal PCR by denaturation bubble-mediated strand exchange amplification. Chemical Communications (Cambridge, England) 52 (77):11551–4. doi:10.1039/c6cc05906f.
  • Wang, D., Y. Zheng, Y. Chai, Y. Yuan, and R. Yuan. 2015. Target protein induced cleavage of a specific peptide for prostate-specific antigen detection with positively charged gold nanoparticles as signal enhancer. Chemical Communications (Cambridge, England) 51 (52):10521–3. doi:10.1039/c5cc02148k.
  • Wang, F. X., D. Y. Yuan, Y. N. Jin, L. Hu, Z. Y. Sun, Q. He, S. H. Zhao, S. B. Zhan, and Y. J. Wen. 2016. Reverse Transcription Cross-Priming Amplification-Nucleic Acid Test Strip for Rapid Detection of Porcine Epidemic Diarrhea Virus. Surface Science Reports 6:24702.
  • Wang, Q., H. Zheng, X. Gao, Z. Lin, and G. Chen. 2013. A label-free ultrasensitive electrochemical aptameric recognition system for protein assay based on hyperbranched rolling circle amplification. Chemical Communications (Cambridge, England) 49 (97):11418–20. doi:10.1039/c3cc46274a.
  • Wang, X., S. Niu, M. Wei, S. Liu, R. Liu, C. Shi, and C. Ma. 2019. Ultrasensitive electrochemical DNA biosensor based on a tetrahedral structure and proximity-dependent surface hybridization. The Analyst 145 (1):150–6. doi:10.1039/c9an01897b.
  • Yu, Y., C. Lee, J. Kim, and S. Hwang. 2005. Group-specific primer and probe sets to detect methanogenic communities using quantitative real-time polymerase chain reaction. Biotechnology and Bioengineering 89 (6):670–9. doi:10.1002/bit.20347.
  • Zhang, J., L. Wang, M. Hou, Y. Xia, W. He, A. Yan, Y. Weng, L. Zeng, and J. Chen. 2018. A ratiometric electrochemical biosensor for the exosomal microRNAs detection based on bipedal DNA walkers propelled by locked nucleic acid modified toehold mediate strand displacement reaction. Biosensors & Bioelectronics 102:33–40. doi:10.1016/j.bios.2017.10.050.
  • Zhang, Y., Y. Wang, H. Wang, J. H. Jiang, G. L. Shen, R. Q. Yu, and J. Li. 2009. Electrochemical DNA biosensor based on the proximity-dependent surface hybridization assay. Analytical Chemistry 81 (5):1982–7. doi:10.1021/ac802512d.
  • Zhu, K., J. Chi, D. Zhang, B. Ma, X. Dong, J. Yang, C. Zhao, and H. Liu. 2019. Bio-inspired photonic crystals for naked eye quantification of nucleic acids. The Analyst 144 (18):5413–9. doi:10.1039/c9an01042d.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.