253
Views
4
CrossRef citations to date
0
Altmetric
Electrochemistry

Multiwalled Carbon Nanotube (MWCNT) Based Electrochemical Paper-Based Analytical Device (ePAD) for the Determination of Catechol in Wastewater

, &
Pages 2484-2497 | Received 15 Sep 2020, Accepted 04 Jan 2021, Published online: 21 Jan 2021

References

  • Adkins, J. A., and C. S. Henry. 2015. Electrochemical detection in paper-based analytical devices using microwire electrodes. Analytica Chimica Acta 891:247–54. doi:10.1016/j.aca.2015.07.019.
  • Aghapour, A. A., G. Moussavi, and K. Yaghmaeian. 2013. Biological degradation of catechol in wastewater using the sequencing continuous-inflow reactor (SCR). Journal of Environmental Health Science & Engineering 11 (1):3–10. doi:10.1186/2052-336X-11-3.
  • Aid, T., M. Kaljurand, and M. Vaher. 2015. Colorimetric determination of total phenolic contents in ionic liquid extracts by paper microzones and digital camera. Analytical Methods 7 (7):3193–9. doi:10.1039/C5AY00194C.
  • Aleixandre-Tudo, J. L., A. Buica, H. Nieuwoudt, J. L. Aleixandre, and W. D. Toit. 2017. Spectrophotometric analysis of phenolic compounds in grapes and wines. Journal of Agricultural and Food Chemistry 65 (20):4009–26. doi:10.1021/acs.jafc.7b01724.
  • Alkasir, R. S. J., M. Ornatska, and S. Andreescu. 2012. Colorimetric paper bioassay for the detection of phenolic compounds. Analytical Chemistry 84 (22):9729–37. doi:10.1021/ac301110d.
  • Babich, H., and D. L. Davis. 1981. Phenol: A review of environmental and health risks. Regulatory Toxicology and Pharmacology : RTP 1 (1):90–109. doi:10.1016/0273-2300(81)90071-4.
  • Canofeni, S., S. D. Sario, J. Mela, and R. Pilloton. 1994. Comparison of immobilisation procedures for development of an electrochemical PPO-based biosensor for on line monitoring of a depuration process. Analytical Letters 27 (9):1659–69. doi:10.1080/00032719408007425.
  • Chandra Sekar, N., S. A. Mousavi Shaegh, S. H. Ng, L. Ge, and S. N. Tan. 2014. A paper-based amperometric glucose biosensor developed with prussian blue-modified screen-printed electrodes. Sensors and Actuators B: Chemical 204:414–20. doi:10.1016/j.snb.2014.07.103.
  • Chen, Y., W. Chu, W. Liu, X. Guo, Y. Jin, and B. Li. 2018. Paper-based chemiluminescence immunodevice for the carcinoembryonic antigen by employing multi-enzyme carbon nanosphere signal enhancement. Mikrochimica Acta 185 (3):187 doi:10.1007/s00604-018-2726-5.
  • Cincotto, F. H., E. L. Fava, F. C. Moraes, O. Fatibello-Filho, and R. C. Faria. 2019. A new disposable microfluidic electrochemical paper-based device for the simultaneous determination of clinical biomarkers. Talanta 195:62–8. doi:10.1016/j.talanta.2018.11.022.
  • Cinti, S., N. Colozza, I. Cacciotti, D. Moscone, M. Polomoshnov, E. Sowade, R. R. Baumann, and F. Arduini. 2018. Electroanalysis moves towards paper-based printed electronics: Carbon black nanomodified inkjet-printed sensor for ascorbic acid detection as a case study. Sensors and Actuators B: Chemical 265:155–60. doi:10.1016/j.snb.2018.03.006.
  • Dossi, N., R. Toniolo, E. Piccin, S. Susmel, A. Pizzariello, and G. Bontempelli. 2013. Pencil-drawn dual electrode detectors to discriminate between analytes comigrating on paper-based fluidic devices but undergoing electrochemical processes with different reversibility. Electroanalysis 25 (11):2515–22. doi:10.1002/elan.201300374.
  • E Silva, R. F., T. R. Longo Cesar Paixão, M. Der Torossian Torres, and W. R. De Araujo. 2020. Simple and inexpensive electrochemical paper-based analytical device for sensitive detection of Pseudomonas aeruginosa. Sensors and Actuators B: Chemical 308:127669. doi:10.1016/j.snb.2020.127669.
  • El-Abbassi, A., H. Kiai, and A. Hafidi. 2012. Phenolic profile and antioxidant activities of olive mill wastewater. Food Chemistry132 (1):406–12. doi:10.1016/j.foodchem.2011.11.013.
  • Fan, Y., S. Shi, J. Ma, and Y. Guo. 2019. A paper-based electrochemical immunosensor with reduced graphene oxide/thionine/gold nanoparticles nanocomposites modification for the detection of cancer antigen 125. Biosensors & Bioelectronics 135:1–7. doi:10.1016/j.bios.2019.03.063.
  • Haghighi, B., and R. Dadashvand. 2006. Flow injection chemiluminescence analysis of phenolic compounds using the NCS-luminol system. Analytical and Bioanalytical Chemistry 384 (5):1246–53. doi:10.1007/s00216-005-0267-3.
  • Hussain, C. M., C. Saridara, and S. Mitra. 2010. Self-assembly of carbon nanotubes via ethanol chemical vapor deposition for the synthesis of gas chromatography columns. Analytical Chemistry 82 (12):5184–8. doi:10.1021/ac100428m.
  • Korkut, S., M. S. Kilic, and E. Erhan. 2015. Modified poly(pyrrole) film based biosensors for phenol detection. International Scholarly and Scientific Research and Innovation 9 (3):439–42.
  • Lee, V. B. C., N. F. Mohd-Naim, E. Tamiya, and M. U. Ahmed. 2018. Trends in paper-based electrochemical biosensors: From design to application. Analytical Sciences : The International Journal of the Japan Society for Analytical Chemistry 34 (1):7–18. doi:10.2116/analsci.34.7.
  • Leouifoudi, I., A. Zyad, A. Amechrouq, M. A. Oukerrou, H. A. Mouse, and M. Mbarki. 2014. Identification and characterisation of phenolic compounds extracted from Moroccan olive mill wastewater. Food Science and Technology (Campinas) 34 (2):249–57. doi:10.1590/fst.2014.0051.
  • Li, H., X. Fang, H. Cao, and J. Kong. 2016a. Paper-based fluorescence resonance energy transfer assay for directly detecting nucleic acids and proteins. Biosensors & Bioelectronics 80:79–83. doi:10.1016/j.bios.2015.12.065.
  • Li, Z., H. Liu, X. He, F. Xu, and F. Li. 2018. Pen-on-paper strategies for point-of-care testing of human health. TrAC Trends in Analytical Chemistry 108:50–64. doi:10.1016/j.trac.2018.08.010.
  • Li, W., D. Qian, Q. Wang, Y. Li, N. Bao, H. Gu, and C. Yu. 2016b. Fully-drawn origami paper analytical device for electrochemical detection of glucose. Sensors and Actuators B: Chemical 231:230–8. doi:10.1016/j.snb.2016.03.031.
  • Martin-Yerga, D. 2019. Electrochemical detection and characterization of nanoparticles with printed devices. Biosensors 9 (2):47: 1-23. doi:10.3390/bios9020047.
  • Meredith, N. A., C. Quinn, D. M. Cate, T. H. Reilly, J. Volckens, and C. S. Henry. 2016. Paper-based analytical devices for environmental analysis. The Analyst 141 (6):1874–87. doi:10.1039/c5an02572a.
  • Mettakoonpitak, J., K. Boehle, S. Nantaphol, P. Teengam, J. A. Adkins, M. Srisa-Art, and C. S. Henry. 2016. Electrochemistry on paper-based analytical devices: A review. Electroanalysis 28 (7):1420–36. doi:10.1002/elan.201501143.
  • Michałowicz, J., and W. Duda. 2007. Phenols – sources and toxicitypolish journal of environmental studies. Polish Journal of Environmental Studies 16 (3):347–62.
  • Noviana, E., C. P. Mccord, K. M. Clark, I. Jang, and C. S. Henry. 2020. Electrochemical paper-based devices: Sensing approaches and progress toward practical applications. Lab on a Chip 20 (1):9–34. doi:10.1039/c9lc00903e.
  • Nurul Karim, M., and H. J. Lee. 2013. Amperometric phenol biosensor based on covalent immobilization of tyrosinase on au nanoparticle modified screen printed carbon electrodes. Talanta 116:991–6. doi:10.1016/j.talanta.2013.08.003.
  • Pavithra, M., S. Muruganand, and C. Parthiban. 2018. Development of novel paper based electrochemical immunosensor with self-made gold nanoparticle ink and quinone derivate for highly sensitive carcinoembryonic antigen. Sensors and Actuators B: Chemical 257:496–503. doi:10.1016/j.snb.2017.10.177.
  • Pradela-Filho, L. A., D. A. G. Araújo, R. M. Takeuchi, and A. L. Santos. 2017. Nail polish and carbon powder: An attractive mixture to prepare paper-based electrodes. Electrochimica Acta 258:786–92. doi:10.1016/j.electacta.2017.11.127.
  • Puangbanlang, C., K. Sirivibulkovit, D. Nacapricha, and Y. Sameenoi. 2019. A paper-based device for simultaneous determination of antioxidant activity and total phenolic content in food samples. Talanta 198:542–9. doi:10.1016/j.talanta.2019.02.048.
  • Romero-Arcos, M., M. G. Garnica-Romo, and H. E. Martinez-Flores. 2016. Electrochemical study and characterization of an amperometric biosensor based on the immobilization of laccase in a nanostructure of TiO2 synthesized by the sol-gel method. Materials 9 (7):543–12. doi:10.3390/ma9070543.
  • Saha, B., K. E. Taylor, J. K. Bewtra, and N. Biswas. 2011. Laccase-catalyzed removal of phenol and benzenediols from wastewater. Journal of Hazardous, Toxic, and Radioactive Waste 15 (1):13–20. doi:10.1061/(ASCE)HZ.1944-8376.0000050.
  • Santhiago, M., and L. T. Kubota. 2013. A new approach for paper-based analytical devices with electrochemical detection based on graphite pencil electrodes. Sensors and Actuators B: Chemical 177:224–30. doi:10.1016/j.snb.2012.11.002.
  • Solná, R., and P. Skládal. 2005. Amperometric flow-injection determination of phenolic compounds using a biosensor with immobilized laccase, peroxidase and tyrosinase. Electroanalysis 17 (23):2137–46. doi:10.1002/elan.200403343.
  • Tortorich, R. P., H. Shamkhalichenar, and J.-W. Choi. 2018. Inkjet-printed and paper-based electrochemical sensors. Applied Sciences 8 (2):288–304. doi:10.3390/app8020288.
  • Tudorache, M., and C. Bala. 2007. Biosensors based on screen-printing technology, and their applications in environmental and food analysis. Analytical and Bioanalytical Chemistry 388 (3):565–78. doi:10.1007/s00216-007-1293-0.
  • Vichapong, J., M. Sookserm, V. Srijesdaruk, P. Swatsitang, and S. Srijaranai. 2010. High performance liquid chromatographic analysis of phenolic compounds and their antioxidant activities in rice varieties. LWT - Food Science and Technology 43 (9):1325–30. doi:10.1016/j.lwt.2010.05.007.
  • Xiang, X., Z. Zhang, J. Shi, and F. Huang. 2015. Paper-based analytical device with colorimetric assay application to the determination of phenolic acids and recognition of Fe3+. RSC Advances 5 (4):2615–19. doi:10.1039/C4RA14465A.
  • Yang, J., Z. Wang, Y. Lin, T. B. Ng, X. Ye, and J. Lin. 2017. Immobilized Cerrena sp. laccase: Preparation, thermal inactivation, and operational stability in malachite green decolorization. Scientific Reports 7 (16429): 1–9. doi:10.1038/s41598-017-16771-x.
  • Zhang, Y., M. A. Arugula, M. Wales, J. Wild, and A. L. Simonian. 2015. A novel layer-by-layer assembled multi-enzyme/CNT biosensor for discriminative detection between organophosphorus and non-organophosphrus pesticides. Biosensors & Bioelectronics 67:287–95. doi:10.1016/j.bios.2014.08.036.
  • Zhang, Z., J. Liu, J. Fan, Z. Wang, and L. Li. 2018. Detection of catechol using an electrochemical biosensor based on engineered Escherichia coli cells that surface-display laccase. Analytica Chimica Acta 1009:65–72. doi:10.1016/j.aca.2018.01.008.
  • Zhang, Y., J. Zhang, H. Wu, S. Guo, and J. Zhang. 2012. Glass carbon electrode modified with horseradish peroxidase immobilized on partially reduced graphene oxide for detecting phenolic compounds. Journal of Electroanalytical Chemistry 681:49–55. doi:10.1016/j.jelechem.2012.06.004.
  • Zhou, X. H., L.H. Liu , X. Bai, and H. C. Shi. 2013. A reduced graphene oxide based biosensor for high-sensitive detection of phenols in water samples. Sensors and Actuators B: Chemical 181:661–7. doi:10.1016/j.snb.2013.02.021.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.