300
Views
7
CrossRef citations to date
0
Altmetric
Immunoassay

Ultrasensitive Determination of Microcystin-Leucine-Arginine (MCLR) by an Electrochemiluminescence (ECL) Immunosensor with Graphene Nanosheets as a Scaffold for Cadmium-Selenide Quantum Dots (QDs)

, , , , , & ORCID Icon show all
Pages 2523-2536 | Received 13 Aug 2020, Accepted 10 Jan 2021, Published online: 25 Jan 2021

References

  • Akbari, E. A., A. Afroozeh, I. S. Zeinalinezhad, and I. S. Amiri. 2018. Analytical investigation for MoS2 field effect transistor-based gas sensor. Journal of Nanoelectronics and Optoelectronics 13 (3):399–404. doi:10.1166/jno.2018.2242.
  • Bartolomeo, A. D., L. Genovese, T. Foller, F. Giubileo, G. Luongo, L. Croin, S. J. Liang, L. K. Ang, and M. Schleberger. 2017. Electrical transport and persistent photoconductivity in monolayer MoS2 phototransistors. Nanotechnology 28 (21):214002. doi:10.1088/1361-6528/aa6d98.
  • Campàs, M., and J. L. Marty. 2007. Highly sensitive amperometric immunosensors for microcystin detection in algae. Biosensors and Bioelectronics 22 (6):1034–40. doi:10.1016/j.bios.2006.04.025.
  • Cao, Y., V. Fatemi, S. Fang, K. Watanabe, T. Taniguchi, E. Kaxiras, and P. Jarillo-Herrero. 2018. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556 (7699):43–52. doi:10.1038/nature26160.
  • Dawson, R. M. 1998. The toxicology of microcystins [Review]. Toxicon: Official Journal of the International Society on Toxinology 36 (7):953–62. doi:10.1016/S0041-0101(97)00102-5.
  • Feng, T., N. M. Saucedo, P. Ramnani, and A. Mulchandani. 2015. Label-free electrical immunosensor for highly sensitive and specific detection of microcystin-LR in water samples. Environmental Science & Technology 49 (15):9256–63. doi:10.1021/acs.est.5b01674.
  • Fu, C., Q. Xu, X. P. Wei, and J. P. Li. 2014. Highly sensitive ECL immunosensor based on multi-labeling of luminol via a dendrimer on Fe3O4 nanoparticles. RSC Advances 4 (50):26102–7. doi:10.1039/c4ra02845g.
  • Gulin, A., A. Shakhov, A. Vasin, A. Astafiev, O. Antonova, S. Kochev, Y. Kabachii, A. Golub, and V. Nadtochenko. 2019. ToF-SIMS depth profiling of nanoparticles: Chemical structure of core-shell quantum dots. Applied Surface Science 481:144–50. doi:10.1016/j.apsusc.2019.03.097.
  • Gulledge, B. M., J. B. Aggen, and A. R. Chamberlin. 2003. Linearized and truncated microcystin analogues as inhibitors of protein phosphatases 1 and 2A. Bioorganic & Medicinal Chemistry Letters 13 (17):2903–6. doi:10.1016/S0960-894X(03)00589-4.
  • Hervés, P., M. Pérez-Lorenzo, L. M. Liz-Marzán, J. Dzubiella, Y. Lu, and M. Ballauff. 2012. Catalysis by metallic nanoparticles in aqueous solution: Model reactions. Chemical Society Reviews 41 (17):5577–87. doi:10.1039/c2cs35029g.
  • Honkanen, R. E., J. Zwiller, R. E. Moore, S. L. Daily, B. S. Khatra, M. Dukelow, and A. L. Boynton. 1990. Characterization of microcystin-LR, a potent inhibitor of type 1 and type 2A protein phosphatases. Journal of Biological Chemistry 265 (32):19401–4. doi:10.1016/S0021-9258(17)45384-1.
  • Hou, X., X. Yan, C. S. Liu, S. J. Ding, D. W. Zhang, and P. Zhou. 2018. Operation mode switchable charge-trap memory based on few-layer MoS2. Semiconductor Science and Technology 33 (3):034001.
  • Jiang, M. X., Y. Chen, G. Q. Kai, R. J. Wang, H. L. Cui, and M. L. Hu. 2012. Preparation of CdSe QDs-carbohydrate conjugation and its application for hepG2 eells labeling. Bulletin of the Korean Chemical Society 33 (2):571–4. doi:10.5012/bkcs.2012.33.2.571.
  • Justh, N., B. Berke, K. Laszlo, and I. M. Szilagyi. 2018. Thermal analysis of the improved Hummers’ synthesis of graphene oxide. Journal of Thermal Analysis and Calorimetry 131 (3):2267–72. doi:10.1007/s10973-017-6697-2.
  • Kang, Y., S. Najmaei, Z. Liu, Y. Bao, Y. Wang, X. Zhu, N. J. Halas, P. Nordlander, P. M. Ajayan, J. Lou, et al. 2014. Plasmonic hot electron induced structural phase transition in a MoS2 monolayer. Advanced Materials (Deerfield Beach, FL) 26 (37):6467–71. doi:10.1002/adma.201401802.
  • Kang, C. L., K. K. Xiao, Z. F. Yao, Y. H. Wang, D. M. Huang, L. Zhu, F. Liu, and T. Tian. 2018. Hydrothermal synthesis of graphene-ZnTiO3 nanocomposites with enhanced photocatalytic activities. Research on Chemical Intermediates 44 (11):6621–36. doi:10.1007/s11164-018-3512-z.
  • Ke, R., X. M. Zhang, L. Wang, C. Y. Zhang, S. Y. Zhang, H. L. Niu, C. J. Mao, J. M. Song, B. K. Jin, and Y. P. Tian. 2015. Enhanced electrochemiluminescence of CdSe quantum dots coupled with MoS2-chitosan nanosheets. Journal of Solid State Electrochemistry 19 (6):1633–41. doi:10.1007/s10008-015-2793-z.
  • Kharitonov, A. B., L. Alfonta, E. Katz, and I. Willner. 2000. Probing of bioaffinity interactions at interfaces using impedance spectroscopy and chronopotentiometry. Journal of Electroanalytical Chemistry 487 (2):133–41. doi:10.1016/S0022-0728(00)00178-9.
  • Lei, H. X., C. Niu, T. Li, Y. F. Wan, W. B. Liang, R.-Y. Yuan, and P. Liao. 2019. A novel electrochemiluminescent immunoassay based on target transformation assisted with catalyzed hairpin assembly amplification for the ultrasensitive bioassay. ACS Applied Materials & Interfaces 11 (34):31427–33. doi:10.1021/acsami.9b12428.
  • Li, L. L., K. P. Liu, G. H. Yang, C. M. Wang, J. R. Zhang, and J. J. Zhu. 2011. Fabrication of graphene-quantum dots composites for sensitive electrogenerated chemiluminescence immunosensing. Advanced Functional Materials 21 (5):869–78. doi:10.1002/adfm.201001550.
  • Li, M., S. K. Paidi, E. Sakowski, S. Preheim, and I. Barman. 2019. Ultrasensitive detection of hepatotoxic microcystin production from cyanobacteria using surface-enhanced Raman scattering immunosensor. ACS Sensors 4 (5):1203–10. doi:10.1021/acssensors.8b01453.
  • Miao, J., W. Hu, Y. Jing, W. Luo, L. Liao, A. Pan, S. Wu, J. Cheng, X. Chen, and W. Lu. 2015. Surface plasmon-enhanced photodetection in few layer MoS2 phototransistors with Au nanostructure arrays. Small (Weinheim an Der Bergstrasse, Germany) 11 (20):2392–8.
  • Nassef, H. M., L. Civit, A. Fragoso, and C. K. O'Sullivan. 2009. Amperometric immunosensor for detection of celiac disease toxic gliadin based on Fab fragments. Analytical Chemistry 81 (13):5299–307. doi:10.1021/ac9005342.
  • Neumann, A. C., S. Melnik, R. Niessner, E. Stoeger, and D. Knopp. 2019. Microcystin-LR enrichment from freshwater by a recombinant plant-derived antibody using sol-gel-glass immunoextraction. Analytical Sciences: The International Journal of the Japan Society for Analytical Chemistry 35 (2):207–14. doi:10.2116/analsci.18P384.
  • Papageorgiou, D. G., I. A. Kinloch, and R. J. Young. 2017. Mechanical properties of graphene and graphene-based nanocomposites. Progress in Materials Science 90:75–127. doi:10.1016/j.pmatsci.2017.07.004.
  • Qin, J., X. J. Sun, D. X. Li, and G. Q. Yan. 2019. Phosphorescent immunosensor for simple and sensitive detection of microcystin-LR in water. RSC Advances 9 (22):12747–54. doi:10.1039/C9RA02141H.
  • Richter, M. M. 2004. Electrochemiluminescence (ECL). Chemical Reviews 104 (6):3003–36. doi:10.1021/cr020373d.
  • Shi, Y., J. Wang, C. Wang, T.-T. Zhai, W.-J. Bao, J.-J. Xu, X.-H. Xia, and H.-Y. Chen. 2015. Hot electron of Au nanorods activates the electrocatalysis of hydrogen evolution on MoS2 nanosheets. Journal of the American Chemical Society 137 (23):7365–70. doi:10.1021/jacs.5b01732.
  • Stewart, A. K., W. K. Strangman, A. Percy, and J. Wright. 2018. The biosynthesis of 15N-labeled microcystins and the comparative MS/MS fragmentation of natural abundance and their 15N-labeled congeners using LC-MS/MS. Toxicon: Official Journal of the International Society on Toxinology 144:91–102. doi:10.1016/j.toxicon.2018.01.021.
  • Wang, T., S. Y. Zhang, C. J. Mao, J. M. Song, H. L. Niu, B. K. Jin, and Y. P. Tian. 2012. Enhanced electrochemiluminescence of CdSe quantum dots composited with graphene oxide and chitosan for sensitive sensor. Biosensors & Bioelectronics 31 (1):369–75. doi:10.1016/j.bios.2011.10.048.
  • Wang, T., H. Zhu, J. Zhuo, Z. Zhu, P. Papakonstantinou, G. Lubarsky, J. Lin, and M. Li. 2013. Biosensor based on ultrasmall MoS2 nanoparticles for electrochemical detection of H2O2 released by cells at the nanomolar level. Analytical Chemistry 85 (21):10289–95. doi:10.1021/ac402114c.
  • World Health Organization (WHO). 1998. Guidelines for drinking-water quality. 2nd ed., 11. https://apps.who.int/iris/handle/10665/38551.
  • Xiao, F. N., M. Wang, F. B. Wang, and X. H. Xia. 2014. Graphene-Ruthenium(II) complex composites for sensitive ECL immunosensors . Small (Weinheim an Der Bergstrasse, Germany) 10 (4):706–16. doi:10.1002/smll.201301566.
  • Yang, Y. K., G. Z. Fang, X. M. Wang, F. Y. Zhang, J. M. Liu, W. J. Zheng, and S. Wang. 2017. Electrochemiluminescent graphene quantum dots enhanced by MoS2 as sensing platform: A novel molecularly imprinted electrochemiluminescence sensor for 2-methyl-4-chlorophenoxyacetic acid assay. Electrochimica Acta 228:107–13. doi:10.1016/j.electacta.2017.01.043.
  • Yu, W., Y. Wang, and X. Peng. 2003. Formation and stability of size-, shape-, and structure-controlled CdTe nanocrystals: ligand effects on monomers and nanocrystals. Chemistry of Materials 15 (22):4300–8. doi:10.1021/cm034729t.
  • Yuwen, L. H., F. Xu, B. Xue, Z. M. Luo, Q. Zhang, B. Q. Bao, S. Su, L. X. Weng, W. Huang, and L. H. Wang. 2014. General synthesis of noble metal (Au, Ag, Pd, Pt) nanocrystal modified MoS2 nanosheets and the enhanced catalytic activity of Pd-MoS2 for methanol oxidation. Nanoscale 6 (11):5762–9. doi:10.1039/c3nr06084e.
  • Zhang, K. L., K. Dai, R. Y. Bai, Y. C. Ma, Y. Deng, D. L. Li, X. Zhang, R. Hu, and Y. H. Yang. 2019. A competitive microcystin-LR immunosensor based on Au NPs@metal-organic framework (MIL-101). Chinese Chemical Letters 30 (3):664–7. doi:10.1016/j.cclet.2018.10.021.
  • Zhang, J. J., T. F. Kang, Y. C. Hao, L. P. Lu, and S. Y. Cheng. 2015. Electrochemiluminescent immunosensor based on CdS quantum dots for ultrasensitive detection of microcystin-LR. Sensors and Actuators B: Chemical 214:117–23. doi:10.1016/j.snb.2015.03.019.
  • Zheng, S. Z., L. J. Zheng, Z. Y. Zhu, J. Chen, J. L. Kang, Z. L. Huang, and D. C. Yang. 2018. MoS2 nanosheet arrays rooted on hollow rGO spheres as bifunctional hydrogen evolution catalyst and supercapacitor electrode. Nano-Micro Letters 10 (4):62. doi:10.1007/s40820-018-0215-3.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.