159
Views
1
CrossRef citations to date
0
Altmetric
Sensors

Amperometric Biomedical Sensor for the Determination of Nitric Oxide Using an Electrochemically Activated and Modified Pencil Graphite Electrode

, , , , , & show all
Pages 2537-2550 | Received 29 Sep 2020, Accepted 13 Jan 2021, Published online: 31 Jan 2021

References

  • Ali, O., G. Mustafa, and O. A. Atilir. 2018. Preparation of a disposable and low-cost electrochemical sensor for propham detection based on over-oxidized poly(thiophene) modified pencil graphite electrode. Talanta 187:125–32. doi:10.1016/j.talanta.2018.05.018.
  • Allen, B. W., and C. A. Piantadosi. 2003. Electrochemical activation of electrodes for amperometric detection of nitric oxide. Nitric Oxide : Biology and Chemistry 8 (4):243–52. doi:10.1016/S1089-8603(03)00029-6.
  • Annu, S. Sharma, R. Jain, and A. N. Raja. 2020. Review—Pencil graphite electrode: An emerging sensing material. Journal of the Electrochemical Society 167:0375011–03750110. doi:10.1149/2.0012003JES.
  • Atta, N. F., A. Galal, A. E. Karagozler, H. Zimmer, J. F. Rubinson, and H. B. Mark. 1990. Voltametric studies of the oxidation of reduced nicotinamode adenine dinucleotide at a conducting polymer electrode. Journal of the Chemical Society, Chemical Communications 19 (19):1347–49. doi:10.1039/C39900001347.
  • Brown, M. D., and M. H. Schoenfisch. 2018. Catalytic selectivity of metallophthalocyanines for electrochemical nitric oxide sensing. Electrochimica Acta 273:98–104. doi:10.1016/j.electacta.2018.03.139.
  • Chandran, B., and K. Janakiraman. 2019. New disposable nitric oxide sensor fabrication using GaN nanowires. ACS Omega 4 (17):17171–76. doi:10.1021/acsomega.9b01609.
  • Dang, X. P., H. Hu, S. F. Wang, and S. S. Hu. 2015. Nanomaterials-based electrochemical sensors for nitric oxide. Microchimica Acta 182 (3-4):455–67. doi:10.1007/s00604-014-1325-3.
  • Frank, M. W., K. R. Harris, K. A. Ahlin, and F. J. Klocke. 1996. Endothelium-derived relaxing factor (nitric oxide) has a tonic vasodilating action on coronary collateral vessels. Journal of the American College of Cardiology 27 (3):658–63. doi:10.1016/0735-1097(95)00521-8.
  • Gadallah, M. I., H. R. H. Ali, H. F. Askal, and G. A. Saleh. 2019. Poly (bromocresol green) flakes-decorated pencil graphite electrode for selective electrochemical sensing applications and pharmacokinetic studies. Materials Science & Engineering. C, Materials for Biological Applications 102:634–45. doi:10.1016/j.msec.2019.03.071.
  • Giao, N. Q., V. H. Dang, P. T. H. Yen, P. H. Phong, V. T. T. Ha, P. K. Duy, and H. Chung. 2019. Au nanodendrite incorporated graphite pencil lead as a sensitive and simple electrochemical sensor for simultaneous detection of Pb(II), Cu(II) and Hg(II). Journal of Applied Electrochemistry 49 (8):839–46. doi:10.1007/s10800-019-01326-x.
  • Gill, A., J. Zajda, and M. E. Meyerhoff. 2019. Comparison of electrochemical nitric oxide detection methods with chemiluminescence for measuring nitrite concentration in food samples. Analytica Chimica Acta 1077:167–73. doi:10.1016/j.aca.2019.05.065.
  • Govindhan, M., and A. C. Chen. 2016. Enhanced electrochemical sensing of nitric oxide using a nanocomposite consisting of platinum-tungsten nanoparticles, reduced graphene oxide and an ionic liquid. Microchimica Acta 183 (11):2879–87. doi:10.1007/s00604-016-1936-y.
  • Hao, G. G., D. Y. Zheng, T. Gan, C. G. Hu, and S. S. Hu. 2011. Development and application of estradiol sensor based on layer-by-layer assembling technique. Journal of Experimental Nanoscience 6 (1):13–28. doi:10.1080/17458081003752988.
  • Hogg, N. 2010. Detection of nitric oxide by electron paramagnetic resonance spectroscopy. Free Radical Biology & Medicine 49 (2):122–29. doi:10.1016/j.freeradbiomed.2010.03.009.
  • Hunter, R. A., B. J. Privett, W. H. Henley, E. R. Breed, Z. Liang, R. Mittal, B. P. Yoseph, J. E. McDunn, E. M. Burd, C. M. Coopersmith, et al. 2013. Microfluidic amperometric sensor for analysis of nitric oxide in whole blood. Analytical Chemistry 85 (12):6066–72. doi:10.1021/ac400932s.
  • Jensen, G. C., Z. Zheng, and M. E. Meyerhoff. 2013. Amperometric nitric oxide sensors with enhanced selectivity over carbon monoxide via platinum oxide formation under alkaline conditions. Analytical Chemistry 85 (21):10057–61. doi:10.1021/ac402633t.
  • Jo, A., H. Do, G. J. Jhon, M. Suh, and Y. Lee. 2011. Electrochemical nanosensor for real-time direct imaging of nitric oxide in living brain. Analytical Chemistry 83 (21):8314–19. doi:10.1021/ac202225n.
  • Kariuki, J., E. Ervin, and C. Olafson. 2015. Development of a novel, low-cost, disposable wooden pencil graphite electrode for use in the determination of antioxidants and other biological compounds. Sensors (Basel, Switzerland) 15 (8):18887–900. doi:10.3390/s150818887.
  • Kisza, A. 2001. Electrochemistry II. Wydawnictwa Naukowo-Techniczne (WNT). Warszawa, Poland.
  • Laviron, E. 1979. General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 101 (1):19–28. doi:10.1016/S0022-0728(79)80075-3.
  • Lee, Y., B. K. Oh, and M. E. Meyerhoff. 2004. Improved planar amperometric nitric oxide sensor based on platinized platinum anode. 1. Experimental results and theory when applied for monitoring NO release from diazeniumdiolate-doped polymeric films. Analytical Chemistry 76 (3):536–44. doi:10.1021/ac035064h.
  • Li, Y., Q. Liu, X. Liang, Q. Xiao, Y. Fang, and Y. Wu. 2016. A new fluorescence biosensor for nitric oxide detection based on cytochrome P450 55B1. Sensors and Actuators B: Chemical 230:405–10. doi:10.1016/j.snb.2016.02.067.
  • Liu, Z., H. Forsyth, N. Khaper, and A. Chen. 2016. Sensitive electrochemical detection of nitric oxide based on AuPt and reduced graphene oxide nanocomposites. The Analyst 141 (13):4074–83. doi:10.1039/C6AN00429F.
  • Nezhadali, A., L. Mehri, and R. Shadmehri. 2018. Determination of methimazole based on electropolymerized-molecularly imprinted polypyrrole modified pencil graphite sensor. Materials Science & Engineering. C, Materials for Biological Applications 85:225–32. doi:10.1016/j.msec.2017.05.099.
  • Oghli, A. H., and A. Soleymanpour. 2020. Polyoxometalate/reduced graphene oxide modified pencil graphite sensor for the electrochemical trace determination of paroxetine in biological and pharmaceutical media. Materials Science & Engineering. C, Materials for Biological Applications 108:110407–11040710. doi:10.1016/j.msec.2019.110407.
  • Oliveira, R., C. Sella, C. Souprayen, E. Ait-Yahiatene, C. Slim, S. Griveau, L. Thouin, and F. Bedioui. 2018. Development of a flow microsensor for selective detection of nitric oxide in the presence of hydrogen peroxide. Electrochimica Acta 286:365–73. doi:10.1016/j.electacta.2018.07.158.
  • Panda, K., R. J. Rosenfeld, S. Ghosh, A. L. Meade, E. D. Getzoff, and D. J. Stuehr. 2002. Distinct dimer interaction and regulation in nitric-oxide synthase types I, II, and III. The Journal of Biological Chemistry 277 (34):31020–30. doi:10.1074/jbc.M203749200.
  • Schmölz, L., M. Wallert, and S. Lorkowski. 2017. Optimized incubation regime for nitric oxide measurements in murine macrophages using the Griess assay. Journal of Immunological Methods 449:68–70. doi:10.1016/j.jim.2017.06.012.
  • Shahid, M. M., P. Rameshkumar, A. Pandikumar, H. N. Lim, Y. H. Ng, and N. M. Huang. 2015. An electrochemical sensing platform based on a reduced graphene oxide-cobalt oxide nanocube@platinum nanocomposite for nitric oxide detection. Journal of Materials Chemistry A 3 (27):14458–68. doi:10.1039/C5TA02608C.
  • Shim, J. H., and L. Y. Youngmi. 2009. Amperometric nitric oxide microsensor based on nanopore-platinized platinum: The application for imaging NO concentrations. Analytical Chemistry 81 (20):8571–76. doi:10.1021/ac901552m.
  • Vinu, A. M., K. K. Aswini, and V. M. Biju. 2014. Electrochemical codeposition of gold particle–poly(2-(2-pyridyl) benzimidazole) hybrid film on glassy carbon electrode for the electrocatalytic oxidation of nitric oxide. Sensors and Actuators B: Chemical 196:406–12. doi:10.1016/j.snb.2014.02.030.
  • Wang, S. Q., and X. Q. Lin. 2005. Electrodeposition of Pt–Fe(III) nanoparticle on glassy carbon electrode for electrochemical nitric oxide sensor. Electrochimica Acta 50 (14):2887–91. doi:10.1016/j.electacta.2004.11.037.
  • Xian, Y. Z., M. C. Liu, Q. Cai, H. Li, J. X. Lu, and L. T. Jin. 2001. Preparation of microporous aluminium anodic oxide film modified Pt nano array electrode and application in direct measurement of nitric oxide release from myocardial cells. The Analyst 126 (6):871–76. doi:10.1039/B010181H.
  • Yap, C. M., G. Q. Xu, and S. G. Ang. 2013. Amperometric nitric oxide sensor based on nanoporous platinum phthalocyanine modified electrodes. Analytical Chemistry 85 (1):107–13. doi:10.1021/ac302081h.
  • Zan, X. L., Z. Fang, J. Wu, F. Xiao, F. W. Huo, and H. W. Duan. 2013. Freestanding graphene paper decorated with 2D-assembly of Au@Pt nanoparticles as flexible biosensors to monitor live cell secretion of nitric oxide. Biosensors & Bioelectronics 49:71–78. doi:10.1016/j.bios.2013.05.006.
  • Zhang, L., Z. Fang, G. C. Zhao, and X. W. Wei. 2008. Electrodeposited platinum nanoparticles on the multi-walled carbon nanotubes and its electrocatalytic for nitric oxide. International Journal of Electrochemical Science 3:746–54. doi:10.1016/j.electacta.2007.10.069.
  • Zhao, Q. L., L. Bao, Q. Y. Luo, M. Zhang, Y. Lin, D. W. Pang, and Z. L. Zhang. 2009. Surface manipulation for improving the sensitivity and selectivity of glassy carbon electrodes by electrochemical treatment. Biosensors & Bioelectronics 24 (10):3003–7. doi:10.1016/j.bios.2009.03.005.
  • Zheng, D. Y., C. G. Hu, Y. F. Peng, and S. S. Hu. 2009. A carbon nanotube/polyvanillin composite film as an electrocatalyst for the electrochemical oxidation of nitrite and its application as a nitrite sensor. Electrochimica Acta 54 (21):4910–15. doi:10.1016/j.electacta.2009.04.004.
  • Zheng, D. Y., X. J. Liu, D. Zhou, and S. S. Hu. 2012. Sensing of nitric oxide using a glassy carbon electrode modified with an electrocatalytic film composed of dihexadecyl hydrogen phosphate, platinum nanoparticles, and acetylene black. Microchimica Acta 176 (1-2):49–55. doi:10.1007/s00604-011-0676-2.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.