252
Views
1
CrossRef citations to date
0
Altmetric
Atomic Spectroscopy

Determination of Non-Metals by Molecular Absorption: A Minireview from the Beginning through Recent Developments in High-Resolution Continuum Source Molecular Absorption Spectrometry (HR-CS MAS)

ORCID Icon
Pages 2574-2589 | Received 13 Dec 2020, Accepted 17 Jan 2021, Published online: 01 Feb 2021

References

  • Abad, C., S. Florek, H. Becker-Ross, M. D. Huang, F. Lopez-Linares, L. Poirier, N. Jakubowski, S. Recknagel, and U. Panne. 2019. Shake, Shut, and go – a fast screening of sulfur in heavy crude oils by high-resolution continuum source graphite furnace molecular absorption spectrometry via GeS molecule detection. Spectrochimica Acta Part B: Atomic Spectroscopy 160:105671. doi:10.1016/j.sab.2019.105671.
  • Abad, C., S. Florek, H. Becker-Ross, M. D. Huang, H. J. Heinrich, S. Recknagel, J. Vogl, N. Jakubowski, and U. Panne. 2017. Determination of boron isotope ratios by high-resolution continuum source molecular absorption spectrometry using graphite furnace vaporizers. Spectrochimica Acta Part B: Atomic Spectroscopy 136:116–22. doi:10.1016/j.sab.2017.08.012.
  • Akhdhar, A.,. M. Schneider, A. Orme, L. Schultes, A. Raab, E. M. Krupp, J. P. Benskin, B. Welz, and J. Feldmann. 2020. The use of high resolution graphite furnace molecular absorption spectrometry (HR -MAS) for total fluorine determination in extractable organofluorines (EOF). Talanta 209:120466 doi:10.1016/j.talanta.2019.120466.
  • Baysal, A., and S. Akman. 2011. A practical method for the determination of sulphur in coal samples by high-resolution continuum source flame atomic absorption spectrometry. Talanta 85 (5):2662–5. doi:10.1016/j.talanta.2011.08.038.
  • Bechlin, M. A., E. C. Ferreira, and J. A. Gomes Neto. 2017. determination of chlorine in cement via CaCl molecule by high-resolution continuum source graphite furnace molecular absorption spectrometry with direct solid sample analysis. Microchemical Journal 132:130–5. doi:10.1016/j.microc.2017.01.019.
  • Borges, A. R., L. L. François, B. Welz, E. Carasek, and M. G. R. Vale. 2014. Determination of fluorine in plant materials via calcium mono-fluoride using high-resolution graphite furnace molecular absorption spectrometry with direct solid sample introduction. Journal of Analytical Atomic Spectrometry 29 (9):1564–9. doi:10.1039/C4JA00067F.
  • Boschetti, W., C. F. G. Frois, M. G. R. Vale, M. M. da Silva, and J. H. Z. dos Santos. 2020. Sulfur determination using the SiS diatomic molecule via HR-CS GF MAS and direct analysis of solid samples: a versatile method for different matrices. Talanta 220:121337 doi:10.1016/j.talanta.2020.121337.
  • Boschetti, W., M. B. Dessuy, A. H. Pizzato, and M. G. R. Vale. 2017. New analytical method for total fluorine determination in soil samples using high-resolution continuum source graphite furnace molecular absorption spectrometry. Microchemical Journal 130:276–80. doi:10.1016/j.microc.2016.10.003.
  • Butcher, D. J. 1993. Determination of fluorine, chlorine, and bromine by molecular absorption spectrometry. Microchemical Journal 48 (3):303–17. doi:10.1006/mchj.1993.1104.
  • Butcher, D. J. 2013. Molecular absorption spectrometry in flames and furnaces: a review. Anal Chim Acta 804:1–15. doi:10.1016/j.aca.2013.07.056.
  • Cacho, F., L. Machynak, M. Nemecek, and E. Beinrohr. 2018. Determination of bromide in aqueous solutions via the TlBr molecule using high-resolution continuum source graphite furnace molecular absorption spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy 144:63–7. doi:10.1016/j.sab.2018.03.010.
  • Cadorim, H. R., É. R. Pereira, E. Carasek, B. Welz, and J. B. De Andrade. 2016. Determination of sulfur in crude oil using high-resolution continuum source molecular absorption spectrometry of the SnS molecule in a graphite furnace. Talanta 146:203–8. doi:10.1016/j.talanta.2015.07.088.
  • Camera, A. S., P. P. Arcênio, W. de, O. P. Filho, T. de, A. Maranhão, F. J. S. de Oliveira, and V. L. A. Frescura. 2017. Method development and validation for sulfur determination via CS molecule in petroleum green coke by high resolution continuum source molecular absorption spectrometry. Microchemical Journal 134:301–8. doi:10.1016/j.microc.2017.06.022.
  • de Gois, J. S., S. J. M. Van Malderen, H. R. Cadorim, B. Welz, and F. Vanhaecke. 2017. A Comparison of laser ablation-inductively coupled plasma-mass spectrometry and high-resolution continuum source graphite furnace molecular absorption spectrometry for the direct determination of bromine in polymers. Spectrochimica Acta Part B: Atomic Spectroscopy 132:50–5. doi:10.1016/j.sab.2017.04.003.
  • Dittrich, K. 1979. Molecular absorption spectrometry with electrothermal volatilization in a graphite tube. Part 3. A study of the determination of fluoride traces by aluminum fluoride, gallium fluoride, indium fluoride, and thallium fluoride (AlF, GaF, InF, TlF) molecular. Analytica Chimica Acta. 111:123–35. doi:10.1016/S0003-2670(01)93254-4.
  • Dittrich, K. 1984. Molecular absorption spectrometry by electrothermal evaporation in graphite furnace-x determination of chloride traces Br AlCl MA in graphite cuvesttes after liquid-liquid extraction of chloride with triphenyltin hydroxide. Talanta 31 (5):341–5. doi:10.1016/0039-9140(84)80093-4.
  • Dittrich, K., and B. Vorberg. 1983. Molekülabsorptionsspektrometrie Bei Elektrothermischer Verdampfung in Einer Graphitrohrküvette. Teil 8. Untersuchung Der GeS-Molekülabsorption Und Bestimmung von S-Species Durch Lichtabsorption von GeS-Molekülen. Analytica Chimica Acta 152:149–61. doi:10.1016/S0003-2670(00)84905-3.
  • Dittrich, K., B. Y. Spivakov, V. M. Shkinev, and G. A. Vorob’eva. 1984. Molecular absorption spectrometry (MAS) by electrothermal evaporation in a graphite furnace-IX determination of traces of bromine by MAS of AlBr after liquid-liquid extraction of bromine with triphenyl tin hydroxide. Talanta 31 (5):341–5. doi:10.1016/0039-9140(84)80008-9.
  • Enders, M. S. P., A. O. Gomes, R. F. Oliveira, R. C. L. Guimarães, M. F. Mesko, E. M. M. Flores, and E. I. Müller. 2016. Determination of chlorine in crude oil by high-resolution continuum source graphite furnace molecular absorption spectrometry using AlCl, InCl, and SrCl molecules. Energy & Fuels 30 (5):3637–43. doi:10.1021/acs.energyfuels.5b02100.
  • Ferreira, H. S., F. G. Lepri, B. Welz, E. Carasek, and M. D. Huang. 2010. Determination of sulfur in biological samples using high-resolution molecular absorption spectrometry in a graphite furnace with direct solid sampling. Journal of Analytical Atomic Spectrometry 25 (7):1039–45. doi:10.1039/b925739j.
  • Flórez, M. R., and M. Resano. 2013. Direct determination of bromine in plastic materials by means of solid sampling high-resolution continuum source graphite furnace molecular absorption spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy 88:32–9. doi:10.1016/j.sab.2013.07.013.
  • Fuwa, K., H. Haraguchi, K. Okamoto, and T. Nagata. 1972. Molecular absorption spectrometry of PO in flame. Bunseki Kagaku 21 (7):945–6. doi:10.2116/bunsekikagaku.21.945.
  • Gehrenkemper, L., F. Simon, P. Roesch, E. Fischer, M. von der Au, J. Pfeifer, A. Cossmer, P. Wittwer, C. Vogel, F.-G. Simon, et al. 2021. Determination of organically bound fluorine sum parameters in river water samples-comparison of combustion ion chromatography (CIC) and high resolution-continuum source-graphite furnace molecular absorption spectrometry (HR-CS-GFMAS) ). Analytical and Bioanalytical Chemistry 413 (1): :103–15. doi:10.1007/s00216-020-03010-y.
  • Gleisner, H., J. W. Einax, S. Morés, B. Welz, and E. Carasek. 2011. A fast and accurate method for the determination of total and soluble fluorine in toothpaste using high-resolution graphite furnace molecular absorption spectrometry and its comparison with established techniques. Journal of Pharmaceutical and Biomedical Analysis 54 (5):1040–6. doi:10.1016/j.jpba.2010.12.013.
  • Guarda, A., M. Aramendía, I. Andrés, E. García-Ruiz, P. C. do Nascimento, and M. Resano. 2017. Determination of chlorine via the CaCl molecule by high-resolution continuum source graphite furnace molecular absorption spectrometry and direct solid sample analysis. Talanta 162:354–61. doi:10.1016/j.talanta.2016.10.039.
  • Gunduz, S., and S. Akman. 2014. Determination of bromine by high resolution molecular absorption of strontium mono bromide generated in a graphite furnace. Microchemical Journal 116:1–6. doi:10.1016/j.microc.2014.03.012.
  • Haraguchi, H., and K. Fuwa. 1975. Atomic and molecular absorption spectra of indium in air-acetylene flame. Spectrochimica Acta Part B: Atomic Spectroscopy 30 (12):535–45. doi:10.1016/0584-8547(75)80048-6.
  • Heitmann, U., H. Becker-Ross, S. Florek, M. D. Huang, and M. Okruss. 2006. Determination of non-metals via molecular absorption using high-resolution continuum source absorption spectrometry and graphite furnace atomization. Journal of Analytical Atomic Spectrometry 21 (11):1314–20. doi:10.1039/b607384k.
  • Huang, M. D., H. Becker-Ross, S. Florek, C. Abad, and M. Okruss. 2017. Investigation of High-resolution absorption spectra of diatomic sulfides of group 14 elements in graphite furnace and the comparison of their performance for sulfur determination. Spectrochimica Acta Part B: Atomic Spectroscopy 135:15–21. doi:10.1016/j.sab.2017.06.012.
  • Huang, M. D., H. Becker-Ross, S. Florek, U. Heitmann, and M. Okruss. 2008. High-resolution continuum source electrothermal absorption spectrometry of AlBrand CaBr for the determination of bromine. Spectrochimica Acta Part B: Atomic Spectroscopy 63 (5):566–70. doi:10.1016/j.sab.2008.02.005.
  • Huber, C. S., M. G. R. Vale, B. Welz, J. B. Andrade, and M. B. Dessuy. 2015. Investigation of chemical modifiers for sulfur determination in diesel fuel samples by high-resolution continuum source graphite furnace molecular absorption spectrometry using direct analysis. Spectrochimica Acta Part B: Atomic Spectroscopy 108:68–74. doi:10.1016/j.sab.2015.03.013.
  • Krawczyk-Coda, M., and E. Stanisz. 2017. Determination of fluorine in herbs and water samples by molecular absorption spectrometry after preconcentration on Nano-TiO2 using ultrasound-assisted dispersive micro solid phase extraction. Analytical and Bioanalytical Chemistry 409 (27):6439–49. doi:10.1007/s00216-017-0589-y.
  • Krüger, M., M. D. Huang, H. Becker-Roß, S. Florek, I. Ott, and R. Gust. 2012. Quantification of the fluorine containing drug 5-fluorouracil in cancer cells by GaF molecular absorption via high-resolution continuum source molecular absorption spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy 69:50–5. doi:10.1016/j.sab.2012.02.004.
  • Lepri, F. G., M. B. Dessuy, M. G. R. Vale, D. L. G. Borges, B. Welz, and U. Heitmann. 2006. Investigation of chemical modifiers for phosphorus in a graphite furnaceusing high-resolution continuum source atomicabsorption spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy 61 (8):934–44. doi:10.1016/j.sab.2006.08.001.
  • Limburg, T., and J. W. Einax. 2013. Determination of bromine using high-resolution continuum source molecular absorption spectrometry in a graphite furnace. Microchemical Journal 107:31–6. doi:10.1016/j.microc.2012.05.016.
  • Machado, P. M., S. Morés, É. R. Pereira, B. Welz, E. Carasek, and J. B. De Andrade. 2015. Fluorine determination in coal using high-resolution graphite furnace molecular absorption spectrometry and direct solid sample analysis. Spectrochimica Acta Part B: Atomic Spectroscopy 105:18–24. doi:10.1016/j.sab.2014.08.001.
  • Marrocos, V. C. P., R. A. Gonçalves, F. G. Lepri, and T. D. Saint'Pierre. 2020. Chemical modification for sulfur determination in human hair by high-resolution continuum source graphite furnace molecular absorption spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy 174:106008. doi:10.1016/j.sab.2020.106008.
  • Medeiros, R. L. d S., S. O. Souza, R. G. O. Araújo, D. R. da Silva, and T. d A. Maranhão. 2018. Chlorine determination via MgCl molecule in environmental samples using high resolution continuum source graphite furnace molecular absorption spectrometry. Talanta 176:227–33. doi:10.1016/j.talanta.2017.08.026.
  • Metzger, M.,. P. Ley, M. Sturm, and B. Meermann. 2019. Screening method for extractable organically bound fluorine (EOF) in river water samples by Means of high-resolution-continuum source graphite furnace molecular absorption spectrometry (HR-CS GF MAS) . ). Analytical and Bioanalytical Chemistry 411 (19):4647–60. doi:10.1007/s00216-019-01698-1.
  • Mior, R., S. Morés, B. Welz, E. Carasek, and J. B. de Andrade. 2013. Determination of sulfur in coal using direct solid sampling and high-resolution continuum source molecular absorption spectrometry of the cs molecule in a graphite furnace. Talanta 106:368–74. doi:10.1016/j.talanta.2013.01.004.
  • Morés, S., G. C. Monteiro, F. d S. Santos, E. Carasek, and B. Welz. 2011. Determination of fluorine in tea using high-resolution molecular absorption spectrometry with electrothermal vaporization of the calcium mono-fluoride CaF. Talanta 85 (5):2681–5. doi:10.1016/j.talanta.2011.08.044.
  • Nakadi, F. V., A. L. C. Soares, and M. A. M. S. Da Veiga. 2014. Determination of sulfur in diesel via CS molecule by high-resolution molecular absorption spectrometry applying palladium nanoparticles as chemical modifier. Journal of Analytical Atomic Spectrometry 29 (10):1871–9. doi:10.1039/C4JA00203B.
  • Nakadi, F. V., L. R. Rosa, and M. A. M. S. Da Veiga. 2013. Determination of sulfur in coal and ash slurry by high-resolution continuum source electrothermal molecular absorption spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy 88:80–4. doi:10.1016/j.sab.2013.04.011.
  • Nakadi, F. V., M. A. M. S. Da Veiga, M. Aramendía, E. García-Ruiz, and M. Resano. 2015. Chlorine isotope determination via the monitoring of the AlCl molecule by high-resolution continuum source graphite furnace molecular absorption spectrometry - a case study. Journal of Analytical Atomic Spectrometry 30 (7):1531–40. doi:10.1039/C5JA00055F.
  • Nakadi, F. V., M. A. M. S. Da Veiga, M. Aramendía, E. García-Ruiz, and M. Resano. 2016. Br isotope determination: via the monitoring of CaBr transitions using high-resolution continuum source graphite furnace molecular absorption spectrometry. potential for direct determination of Br in solid samples using isotope dilution. Journal of Analytical Atomic Spectrometry 31 (7):1381–90. doi:10.1039/C6JA00114A.
  • Oliveira, I. K. S., R. L. S. Medeiros, D. R. Silva, and T. A. Maranhão. 2018. Determination of chlorine in crude oil emulsified via the MgCl molecule by HR-CS MAS. Article J. Braz. Chem. Soc 29 (3):571–8. doi:10.21577/0103-5053.20170169.
  • Ozbek, N., and A. Baysal. 2017a. Determination of sulfur by high-resolution continuum source atomic absorption spectrometry: review of studies over the last 10 years. TrAC Trends in Analytical Chemistry 88:62–76. doi:10.1016/j.trac.2016.09.014.
  • Ozbek, N., and A. Baysal. 2017b. determination of sulfur in human hair using high resolution continuum source graphite furnace molecular absorption spectrometry and its correlation with total protein and albumin. Spectrochimica Acta Part B: Atomic Spectroscopy 130:17–20. doi:10.1016/j.sab.2017.01.007.
  • Ozbek, N., and S. Akman. 2012a. Method development for the determination of fluorine in water samples via the molecular absorption of strontium monofluoride formed in an electrothermal atomizer. Spectrochimica Acta Part B: Atomic Spectroscopy 69:32–7. doi:10.1016/j.sab.2012.03.003.
  • Ozbek, N., and S. Akman. 2012b. Method development for the determination of fluorine in toothpaste via molecular absorption of aluminum mono fluoride using a high-resolution continuum source nitrous oxide/acetylene flame atomic absorption spectrophotometer. Talanta 94:246–50. doi:10.1016/j.talanta.2012.03.034.
  • Ozbek, N., and S. Akman. 2013a. Molecule formation mechanisms of strontium mono fluoride in high-resolution continuum source electrothermal atomic absorption spectrometry. Analytical Sciences : The International Journal of the Japan Society for Analytical Chemistry 29 (7):741–6. doi:10.2116/analsci.29.741.
  • Ozbek, N., and S. Akman. 2013b. Determination of fluorine in milk samples via calcium-monofluoride by electrothermal molecular absorption spectrometry. Food Chemistry 138 (1):650–4. doi:10.1016/j.foodchem.2012.11.008.
  • Ozbek, N., and S. Akman. 2013c. Determination of total sulfur in food samples by solid sampling high-resolution continuum source graphite furnace molecular absorption spectrometry. Journal of Agricultural and Food Chemistry 61 (20):4816–21. doi:10.1021/jf4009263.
  • Ozbek, N., and S. Akman. 2014. Determination of fluorine in milk and water via molecular absorption of barium monofluoride by high-resolution continuum source atomic absorption spectrometer. Microchemical Journal 117:111–5. doi:10.1016/j.microc.2014.06.013.
  • Ozbek, N., and S. Akman. 2016a. Determination of chlorine in milk via molecular absorption of srcl using high-resolution continuum source graphite furnace atomic absorption spectrometry. Journal of Agricultural and Food Chemistry 64 (28):5767–72. doi:10.1021/acs.jafc.6b02024.
  • Ozbek, N., and S. Akman. 2016b. Solid sampling determination of total fluorine in baby food samples by high-resolution continuum source graphite furnace molecular absorption spectrometry. Food Chemistry 211:180–4. doi:10.1016/j.foodchem.2016.05.044.
  • Ozbek, N., and S. Akman. 2018. Application of solid sampling for the determination of total fluorine in fish and seafood by high-resolution continuum source graphite furnace molecular absorption spectrometry. Analytical Letters 51 (17):2778–91. doi:10.1080/00032719.2018.1450880.
  • Parvinen, P., and L. H. J. Lajunen. 1990. Determination of bromine by aluminium monobromide molecular absorption spectrometry using arsenic atomic lines. Spectroscopy Letters 23 (10):1321–30. doi:10.1080/00387019008054504.
  • Passos, A. Sd., M. B. Dessuy, F. V. Nakadi, J. B. de Andrade, and M. G. R. Vale. 2019. Investigation of different chemical modifiers based on the Pd/Mg mixture for the determination of sulfur in shale oil by high-resolution continuum source graphite furnace molecular absorption spectrometry. Talanta 204:206–12. doi:10.1016/j.talanta.2019.05.114.
  • Pereira, É. R., B. Welz, A. H. D. Lopez, J. S. De Gois, G. F. Caramori, D. L. G. Borges, E. Carasek, and J. B. De Andrade. 2014. Strontium mono-chloride - a new molecule for the determination of chlorine using high-resolution graphite furnace molecular absorption spectrometry and direct solid sample analysis. Spectrochimica Acta Part B: Atomic Spectroscopy 102:1–6. doi:10.1016/j.sab.2014.09.018.
  • Pereira, É. R., B. Welz, and A. A. Vieira. 2018. A systematic look at the carbon monosulfide molecule and chemical modifiers for the determination of sulfur by HR-CS GF MAS. Journal of Analytical Atomic Spectrometry 33 (8):1394–401. doi:10.1039/C8JA00146D.
  • Pereira, É. R., I. N. B. Castilho, B. Welz, J. S. Gois, D. L. G. Borges, E. Carasek, and J. B. De Andrade. 2014. Method development for the determination of bromine in coal using high-resolution continuum source graphite furnace molecular absorption spectrometry and direct solid sample analysis. Spectrochimica Acta Part B: Atomic Spectroscopy 96:33–9. doi:10.1016/j.sab.2014.04.001.
  • Pereira, É. R., L. M. Rocha, H. R. Cadorim, V. D. Silva, B. Welz, E. Carasek, and J. B. De Andrade. 2015. Determination of chlorine in coal via the SrCl molecule using high-resolution graphite furnace molecular absorption spectrometry and direct solid sample analysis. Spectrochimica Acta Part B: Atomic Spectroscopy 114:46–50. doi:10.1016/j.sab.2015.10.001.
  • Pires, L. N., G. C. Brandão, and L. S. G. Teixeira. 2017. Determination of phospholipids in soybean lecithin samples via the phosphorus monoxide molecule by high-resolution continuum source graphite furnace molecular absorption spectrometry. Food Chemistry 225:162–6. doi:10.1016/j.foodchem.2017.01.019.
  • Pires, L. N., S. A. Jorge, F. d S. Dias, and L. S. G. Teixeira. 2020. Sequential and simultaneous determination of chlorine, iron, and silicon in beer samples by high-resolution continuum source graphite furnace molecular and atomic absorption spectrometry. Food Analytical Methods 13 (9):1746–54. doi:10.1007/s12161-020-01787-3.
  • Pomarolli, L. C., M. A. M. S. da Veiga, M. Resano, and F. Venâncio Nakadi. 2020. Understanding polyatomic interference in the determination of phosphorus via PO molecules using high-resolution continuum source graphite furnace molecular absorption spectrometry with direct solid analysis. Journal of Analytical Atomic Spectrometry 35 (10):2305–14. doi:10.1039/D0JA00254B.
  • Resano, M., and M. R. Flórez. 2012. Direct determination of sulfur in solid samples by means of high-resolution continuum source graphite furnace molecular absorption spectrometry using palladium nanoparticles as chemical modifier. Journal of Analytical Atomic Spectrometry 27 (3):401–12. doi:10.1039/c2ja10322b.
  • Resano, M., J. Briceño, and M. A. Belarra. 2009. Direct determination of phosphorus in biological samples using a solid sampling-high resolution-continuum source electrothermal spectrometer: comparison of atomic and molecular absorption spectrometry. Journal of Analytical Atomic Spectrometry 24 (10):1343–54. doi:10.1039/b907937h.
  • Resano, M., M. Aramendía, F. V. Nakadi, E. García-Ruiz, C. Alvarez-Llamas, N. Bordel, J. Pisonero, E. Bolea-Fernández, T. Liu, and F. Vanhaecke. 2020. Breaking the boundaries in spectrometry. Molecular analysis with atomic spectrometric techniques. TrAC Trends in Analytical Chemistry 129:115955. doi:10.1016/j.trac.2020.115955.
  • Resano, M., M. R. Flórez, and E. García-Ruiz. 2014. Progress in the determination of metalloids and non-metals by means of high-resolution continuum source atomic or molecular absorption spectrometry. a critical review. Analytical and Bioanalytical Chemistry 406 (9-10):2239–59. doi:10.1007/s00216-013-7522-9.
  • Russo, R. E., A. A. Bol'shakov, X. Mao, C. P. McKay, D. L. Perry, and O. Sorkhabi. 2011. Laser ablation molecular isotopic spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy 66 (2): :99–104. doi:10.1016/j.sab.2011.01.007.
  • Tinas, H., and S. Akman. 2018. Method development for the determination of chlorine by high-resolution graphite furnace molecular absorption spectrometry via GaCl. Spectrochimica Acta Part B: Atomic Spectroscopy 148:60–4. doi:10.1016/j.sab.2018.06.003.
  • Tinas, H., M. Dirak, N. Ozbek, and S. Akman. 2019. Determination of chlorine in plastics via SrCl by solid-sampling high-resolution continuum source graphite furnace molecular absorption spectrometry. Analytical Letters 52 (9):1509–18. doi:10.1080/00032719.2018.1553978.
  • Tittarelli, P., and G. Lavorato. 1987. Determination of sulphur in fuel oils by absorption spectrometry of electrothermally generated carbon sulphide molecules. Analytica Chimica Acta 201:59–65. doi:10.1016/S0003-2670(00)85324-6.
  • Tsunoda, K. I., K. Chiba, H. Haraguchi, and K. Fuwa. 1979. Platinum atomic lines for determination of ultratrace fluoride by aluminum monofluoride molecular absorption spectrometry. Analytical Chemistry 51 (12):2059–61. doi:10.1021/ac50048a044.
  • Tsunoda, K. I., K. Fujiwara, and K. Fuwa. 1977. Subnanogram fluorine determination by aluminum monofluoride molecular absorption spectrometry. Analytical Chemistry 49 (13):2035–9. doi:10.1021/ac50021a036.
  • Tsunoda, K. I., K. Fujiwara, and K. Fuwa. 1978. Determination of chlorine and bromine by molecular absorption of aluminum monohalides at high temperature. Analytical Chemistry 50 (7):861–5. doi:10.1021/ac50029a011.
  • Turhan, N., N. Ozbek, and S. Akman. 2019. Method development for the determination of bromine via molecular absorption of barium monobromide by high-resolution continuum source molecular absorption spectrometry. Journal of Analytical Atomic Spectrometry 34 (3):577–82. doi:10.1039/C8JA00422F.
  • Vieira, A. A., É. R. Pereira, E. Carasek, and B. Welz. 2019. The use of Ca + Pd + Zr as modifiers in the determination of sulfur by HR-CS GF MAS with solid sampling. Journal of Analytical Atomic Spectrometry 34 (3):498–503. doi:10.1039/C8JA00445E.
  • Vieira, A. L., D. A. Gonçalves, A. Virgilio, E. C. Ferreira, B. T. Jones, G. L. Donati, and J. A. G. Neto. 2019. Multi-energy calibration for the determination of non-metals by high-resolution continuum source molecular absorption spectrometry. Journal of Analytical Atomic Spectrometry 34 (5):972–8. doi:10.1039/C9JA00006B.
  • Welz, B., F. G. Lepri, R. G. O. Araujo, S. L. C. Ferreira, M. D. Huang, M. Okruss, and H. Becker-Ross. 2009. Determination of phosphorus, sulfur and the halogens using high-temperature molecular absorption spectrometry in flames and furnaces-a review. Analytica Chimica Acta 647 (2):137–48. doi:10.1016/j.aca.2009.06.029.
  • Welz, B., M. G. R. Vale, É. R. Pereira, I. N. B. Castilho, and M. B. Dessuy. 2014. Continuum source atomic absorption spectrometry: past, present and future aspects-a critical review. Journal of the Brazilian Chemical Society 25 (5):799–821. doi:10.5935/0103-5053.20140053.
  • Welz, B., S. Morés, E. Carasek, M. G. R. Vale, M. Okruss, and H. Becker-Ross. 2010. High-resolution continuum source atomic and molecular absorption spectrometry-a review. Applied Spectroscopy Reviews 45 (5):327–54. doi:10.1080/05704928.2010.483669.
  • Würtenberger, I., and R. Gust. 2014. A highly sensitive method for in vitro testing of fluorinated drug candidates using high-resolution continuum source molecular absorption spectrometry (HR-CS MAS). Analytical and Bioanalytical Chemistry 406 (14):3431–42. doi:10.1007/s00216-014-7780-1.
  • Zanatta, M. B. T., F. V. Nakadi, M. Resano, and M. A. M. S. Da Veiga. 2019. Calcium isotope determination in urine samples: via the monitoring of 44CaF and 40CaF molecules by high-resolution continuum source graphite furnace molecular absorption spectrometry. Journal of Analytical Atomic Spectrometry 34 (11): :2280–7. doi:10.1039/C9JA00233B.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.