223
Views
1
CrossRef citations to date
0
Altmetric
Fluorescence

Hemicyanine-Based Fluorescent Probe for Distinguishing Cysteine in Living HeLa Cells

ORCID Icon, , , , &
Pages 2666-2675 | Received 27 Oct 2020, Accepted 22 Jan 2021, Published online: 09 Feb 2021

References

  • Armstrong, J. S., K. K. Steinauer, B. Hornung, J. M. Irish, P. Lecane, G. W. Birrell, D. M. Peehl, and S. J. Knox. 2002. Role of glutathione depletion and reactive oxygen species generation in apoptotic signaling in a human b lymphoma cell line. Cell Death and Differentiation 9 (3):252–63. doi:10.1038/sj.cdd.4400959.
  • Cai, S. T., C. Liu, X. J. Jiao, L. C. Zhao, and X. S. Zeng. 2020. A lysosome-targeted near-infrared fluorescent probe for imaging endogenous cysteine (cys) in living cells. Journal of Materials Chemistry. B 8 (11):2269–74. doi:10.1039/c9tb02609f.
  • Chen, Z. Y., Q. Sun, Y. H. Yao, X. X. Fan, W. B. Zhang, and J. H. Qian. 2017. Highly sensitive detection of cysteine over glutathione and homo-cysteine: New insight into the Michael addition of mercapto group to maleimide. Biosensors & Bioelectronics 91:553–9. doi:10.1016/j.bios.2017.01.013.
  • Chen, C. Y., L. Q. Zhou, W. Liu, and W. S. Liu. 2018. Coumarinocoumarin-based two-photon fluorescent cysteine biosensor for targeting lysosome. Analytical Chemistry 90 (10):6138–43. doi:10.1021/acs.analchem.8b00434.
  • Fan, L., W. J. Zhang, X. D. Wang, W. J. Dong, Y. L. Tong, C. Dong, and S. M. Shuang. 2019. A two-photon ratiometric fluorescent probe for highly selective sensing of mitochondrial cysteine in live cells. The Analyst 144 (2):439–47. doi:10.1039/c8an01908h.
  • Gao, J., Y. Tao, J. Zhang, N. Wang, X. Ji, J. He, Y. Si, and W. Zhao. 2019. Development of lysosome-targeted fluorescent probes for Cys by regulating the boron-dipyrromethene (BODIPY) molecular structure. Chemistry-A European Journal 25 (48):11246–56.
  • Herzenberg, L. A., S. C. De Rosa, J. G. Dubs, M. Roederer, M. T. Anderson, S. W. Ela, S. C. Deresinski, and L. A. Herzenberg. 1997. Glutathione deficiency is associated with impaired survival in HIV disease. Proceedings of the National Academy of Sciences of Sciences 94 (5):1967–72. doi:10.1073/pnas.94.5.1967.
  • Ji, X., N. Wang, J. Zhang, S. Xu, Y. Si, and W. Zhao. 2021. Meso-pyridinium substituted BODIPY dyes as mitochondria-targeted probes for the detection of cysteine in living cells and in vivo. Dyes and Pigments 187:109089. doi:10.1016/j.dyepig.2020.109089.
  • Jiang, G. Y., X. Liu, Q. Q. Chen, G. J. Zeng, Y. Q. Wu, X. B. Dong, G. X. Zhang, Y. D. Li, X. L. Fan, and J. G. Wang. 2017. A new tetraphenylethylene based aie probe for light-up and discriminatory detection of Cys over Hcy and GSH. Sensors and Actuators B: Chemical 252:712–6. doi:10.1016/j.snb.2017.06.066.
  • Koutmos, M., O. Kabil, J. L. Smith, and R. Banerjee. 2010. Structural basis for substrate activation and regulation by cystathionine beta-synthase (cbs) domains in cystathionine {beta}-synthase. Proceedings of the National Academy of Sciences of the United States of America 107 (49):20958–63. doi:10.1073/pnas.1011448107.
  • Li, X., X. Gao, W. Shi, and H. Ma. 2014. Design strategies for water-soluble small molecular chromogenic and fluorogenic probes. Chemical Reviews 114 (1):590–659. doi:10.1021/cr300508p.
  • Li, B., J. Kou, H. Mei, X. Gu, M. Wang, X. Xie, and K. Xu. 2020. A hemicyanine-based "turn-on" fluorescent probe for the selective detection of Cu2+ ions and imaging in living cells. Analytical Methods: Advancing Methods and Applications 12 (34):4181–4. doi:10.1039/d0ay01461c.
  • Lin, W., L. Long, L. Yuan, Z. Cao, B. Chen, and W. Tan. 2008. A ratiometric fluorescent probe for cysteine and homocysteine displaying a large emission shift. Organic Letters 10 (24):5577–80. doi:10.1021/ol802436j.
  • Liu, H. W., K. Li, X. X. Hu, L. Zhu, Q. Rong, Y. Liu, X. B. Zhang, J. Hasserodt, F. L. Qu, and W. Tan. 2017. In situ localization of enzyme activity in live cells by a molecular probe releasing a precipitating fluorochrome. Angewandte Chemie (International ed. in English) 56 (39):11788–92. doi:10.1002/anie.201705747.
  • Liu, G., D. Liu, X. Han, X. Sheng, Z. Xu, S. H. Liu, L. Zeng, and J. Yin. 2017. A hemicyanine-based colorimetric and ratiometric fluorescent probe for selective detection of cysteine and bioimaging in living cell. Talanta 170:406–12. doi:10.1016/j.talanta.2017.04.038.
  • Men, Y., X. Zhou, Z. Yan, L. Niu, Y. Luo, J. Wang, and J. Wang. 2020. A water-soluble near-infrared fluorescent probe for cysteine/homocysteine and its application in live cells and mice. Analytical Sciences : The International Journal of the Japan Society for Analytical Chemistry 36 (9):1053–7. doi:10.2116/analsci.20P016.
  • Niu, L. Y., Y. Z. Chen, H. R. Zheng, L. Z. Wu, C. H. Tung, and Q. Z. Yang. 2015. Design strategies of fluorescent probes for selective detection among biothiols. Chemical Society Reviews 44 (17):6143–60. doi:10.1039/c5cs00152h.
  • Niu, L. Q., J. Huang, Z. J. Yan, Y. H. Men, Y. Luo, X. M. Zhou, J. M. Wang, and J. H. Wang. 2019. Fluorescence detection of intracellular pH changes in the mitochondria-associated process of mitophagy using a hemicyanine-based fluorescent probe. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 207:123–31. doi:10.1016/j.saa.2018.09.015.
  • Niu, L., Y. Luo, Y. Gan, Q. Cao, C. Zhu, M. Wang, J. Wang, W. Zhang, and J. Wang. 2020. Novel cascade reaction-based fluorescent cyanine chemosensor for cysteine detection and bioimaging in living system. Talanta 219:121291. doi:10.1016/j.talanta.2020.121291.
  • Niu, H., B. Ni, K. Chen, X. Yang, W. Cao, Y. Ye, and Y. Zhao. 2019. A long-wavelength-emitting fluorescent probe for simultaneous discrimination of H2S/Cys/GSH and its bio-imaging applications. Talanta 196:145–52. doi:10.1016/j.talanta.2018.12.031.
  • Paulsen, C. E., and K. S. Carroll. 2013. Cysteine-mediated redox signaling: Chemistry, biology, and tools for discovery. Chemical Reviews 113 (7):4633–79. doi:10.1021/cr300163e.
  • Pey, A. L., T. Majtan, J. M. Sanchez-Ruiz, and J. P. Kraus. 2013. Human cystathionine β-synthase (CBS) contains two classes of binding sites for S-adenosylmethionine (SAM): Complex regulation of CBS activity and stability by SAM . The Biochemical Journal 449 (1):109–21. doi:10.1042/BJ20120731.
  • Reddie, K. G., and K. S. Carroll. 2008. Expanding the functional diversity of proteins through cysteine oxidation. Current Opinion in Chemical Biology 12 (6):746–54. doi:10.1016/j.cbpa.2008.07.028.
  • Shahrokhian, S. 2001. Lead phthalocyanine as a selective carrier for preparation of a cysteine-selective electrode. Analytical Chemistry 73 (24):5972–8. doi:10.1021/ac010541m.
  • Townsend, D. M., K. D. Tew, and H. Tapiero. 2003. The importance of glutathione in human disease. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 57 (3–4):145–55. doi:10.1016/S0753-3322(03)00043-X.
  • Wang, N., M. Chen, J. Gao, X. Ji, J. He, J. Zhang, and W. Zhao. 2019. A series of BODIPY-based probes for the detection of cysteine and homocysteine in living cells. Talanta 195:281–9. doi:10.1016/j.talanta.2018.11.066.
  • Wang, N., X. Ji, H. Wang, X. Wang, Y. Tao, W. Zhao, and J. Zhang. 2020. BODIPY-based fluorescent probe for the detection of cysteine in living cells. Analytical Sciences : The International Journal of the Japan Society for Analytical Chemistry 36 (11):1317–22. doi:10.2116/analsci.20P134.
  • Wang, N., C. Y. Majmudar, W. C. Pomerantz, J. K. Gagnon, J. D. Sadowsky, J. L. Meagher, T. K. Johnson, J. A. Stuckey, C. L. Brooks, III, J. A. Wells, et al. 2013. Ordering a dynamic protein via a small-molecule stabilizer. Journal of the American Chemical Society 135 (9):3363–6. doi:10.1021/ja3122334.
  • Wang, J., L. Niu, J. Huang, Z. Yan, X. Zhou, and J. Wang. 2018a. Thiazolyl substituted nbd as fluorescent probe for the detection of homocysteine and cysteine. Dyes and Pigments 158:151–6. doi:10.1016/j.dyepig.2018.05.039.
  • Wang, J. L., H. Wang, Y. F. Hao, S. X. Yang, H. Y. Tian, B. G. Sun, and Y. G. Liu. 2018b. A novel reaction-based fluorescent probe for the detection of cysteine in milk and water samples. Food Chemistry 262:67–71. doi:10.1016/j.foodchem.2018.04.084.
  • Yang, X. F., Y. X. Guo, and R. M. Strongin. 2011. Conjugate addition/cyclization sequence enables selective and simultaneous fluorescence detection of cysteine and homocysteine. Angewandte Chemie (International ed. in English) 50 (45):10690–3. doi:10.1002/anie.201103759.
  • Yang, X. P., W. Y. Liu, J. Tang, P. Li, H. B. Weng, Y. Ye, M. Xian, B. Tang, and Y. F. Zhao. 2018. A multi-signal mitochondria-targeted fluorescent probe for real-time visualization of cysteine metabolism in living cells and animals. Chemical Communications (Cambridge, England) 54 (81):11387–90. doi:10.1039/c8cc05418e.
  • Yin, C. X., K. M. Xiong, F. J. Huo, J. C. Salamanca, and R. M. Strongin. 2017. Fluorescent probes with multiple binding sites for the discrimination of Cys, Hcy, and GSH. Angewandte Chemie (International ed. in English) 56 (43):13188–98. doi:10.1002/anie.201704084.
  • Zhang, X. Y., N. He, Y. Huang, F. B. Yu, B. W. Li, C. J. Lv, and L. X. Chen. 2019. Mitochondria-targeting near-infrared ratiometric fluorescent probe for selective imaging of cysteine in orthotopic lung cancer mice. Sensors and Actuators B: Chemical 282:69–77. doi:10.1016/j.snb.2018.11.056.
  • Zhang, J., X. Ji, H. Ren, J. Zhou, Z. Chen, X. Dong, and W. Zhao. 2018a. Meso-heteroaryl bodipy dyes as dual-responsive fluorescent probes for discrimination of Cys from Hcy and GSH. Sensors and Actuators B: Chemical 260:861–9. doi:10.1016/j.snb.2018.01.016.
  • Zhang, J., X. Ji, J. L. Zhou, Z. J. Chen, X. C. Dong, and W. L. Zhao. 2018b. Pyridinium substituted BODIPY as NIR fluorescent probe for simultaneous sensing of hydrogen sulphide/glutathione and cysteine/homocysteine. Sensors and Actuators B: Chemical 257:1076–82. doi:10.1016/j.snb.2017.10.133.
  • Zhang, J., N. Wang, X. Ji, Y. Tao, J. Wang, and W. Zhao. 2020a. Bodipy-based fluorescent probes for biothiols. Chemistry (Weinheim an Der Bergstrasse, Germany) 26 (19):4172–92. doi:10.1002/chem.201904470.
  • Zhang, R., J. X. Yong, J. L. Yuan, and Z. P. Xu. 2020b. Recent advances in the development of responsive probes for selective detection of cysteine. Coordination Chemistry Reviews 408:213182. doi:10.1016/j.ccr.2020.213182.
  • Zhou, Z.,. H. Tang, S. Chen, Y. Huang, X. Zhu, H. Li, Y. Zhang, and S. Yao. 2021. A turn-on red-emitting fluorescent probe for determination of copper(II) ions in food samples and living zebrafish. Food Chemistry 343:128513. doi:10.1016/j.foodchem.2020.128513.
  • Zhu, G. B., D. Y. Huang, L. R. Liu, Y. H. Yi, Y. T. Wu, and Y. Q. Huang. 2020. One-step green preparation of N-doped silicon quantum dots for the on-off fluorescent determination of hydrogen peroxide. Analytical Letters 53 (11):1834–49. doi:10.1080/00032719.2020.1720222.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.