166
Views
1
CrossRef citations to date
0
Altmetric
BIOSENSORS

Electrochemical Determination of Hydroquinone Using a Tyrosinase-Based Cup-Stacked Carbon Nanotube (CSCNT)/Carbon Fiber Felt Composite Electrode

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 2700-2712 | Received 08 Oct 2020, Accepted 28 Jan 2021, Published online: 15 Feb 2021

References

  • Aradhya, S. V., and L. Venkataraman. 2013. Single-molecule junctions beyond electronic transport. Nature Nanotechnology 8 (6):399–410. doi:10.1038/nnano.2013.91.
  • Biswas, P., A. K. Karn, P. Balasubramanian, and P. G. Kale. 2017. Biosensor for detection of dissolved chromium in potable water: A review. Biosensors & Bioelectronics 94:589–604. doi:10.1016/j.bios.2017.03.043.
  • Cerrato-Alvarez, M., E. Bernalte, M. J. Bernalte-García, and E. Pinilla-Gil. 2019. Fast and direct amperometric analysis of polyphenols in beers using tyrosinase-modified screen-printed gold nanoparticles biosensors. Talanta 193:93–9. doi:10.1016/j.talanta.2018.09.093.
  • Derkus, B. 2016. Applying the miniaturization technologies for biosensor design. Biosensors & Bioelectronics 79:901–13. doi:10.1016/j.bios.2016.01.033.
  • Endo, M., Y. A. Kim, T. Hayashi, Y. Fukai, K. Oshida, M. Terrones, T. Yanagisawa, S. Higaki, and M. S. Dresselhaus. 2002. Structural characterization of cup-stacked-type nanofibers with an entirely hollow core. Applied Physics Letters 80 (7):1267–9. doi:10.1063/1.1450264.
  • Gałuszka, A., Z. Migaszewski, and J. Namieśnik. 2013. The 12 principles of green analytical chemistry and the significance mnemonic of green analytical practices. TrAC Trends in Analytical Chemistry 50:78–84. doi:10.1016/j.trac.2013.04.010.
  • Grimaldi, J., M. Radhakrishna, S. K. Kumar, and G. Belfort. 2015. Stability of proteins on hydrophilic surfaces. Langmuir : The ACS Journal of Surfaces and Colloids 31 (3):1005–10. doi:10.1021/la503865b.
  • Han, L., W. Zhou, W. Li, and Y. Qian. 2018. Urbanization strategy and environmental changes: An insight with relationship between population change and fine particulate pollution. The Science of the Total Environment 642:789–99. doi:10.1016/j.scitotenv.2018.06.094.
  • Hanefeld, U., L. Gardossi, and E. Magner. 2009. Understanding enzyme immobilisation. Chemical Society Reviews 38 (2):453–68. doi:10.1039/B711564B.
  • Jiang, D., J. Pang, Q. You, T. Liu, Z. Chu, and W. Jin. 2019. Simultaneous biosensing of catechol and hydroquinone via a truncated cube-shaped Au/PBA nanocomposite. Biosensors and Bioelectronics 124–125:260–7. doi:10.1016/j.bios.2018.09.094.
  • Karajanagi, S. S., A. A. Vertegel, R. S. Kane, and J. S. Dordick. 2004. Structure and function of enzymes adsorbed onto single-walled carbon nanotubes. Langmuir : The ACS Journal of Surfaces and Colloids 20 (26):11594–9. doi:10.1021/la047994h.
  • Le, T. X. H., M. Bechelany, and M. Cretin. 2017. Carbon felt based-electrodes for energy and environmental applications: A review. Carbon 122:564–91. doi:10.1016/j.carbon.2017.06.078.
  • Li, G., K. Sun, D. Li, P. Lv, Q. Wang, F. Huang, and Q. Wei. 2016. Biosensor based on bacterial cellulose-Au nanoparticles electrode modified with laccase for hydroquinone detection. Colloids and Surfaces A: Physicochemical and Engineering Aspects 509:408–14. doi:10.1016/j.colsurfa.2016.09.028.
  • Li, Q., R. Matsushita, Y. Tomo, T. Ikuta, and K. Takahashi. 2019. Water confined in hydrophobic cup-stacked carbon nanotubes beyond surface-tension dominance. The Journal of Physical Chemistry Letters 10 (13):3744–9. doi:10.1021/acs.jpclett.9b00718.
  • Liu, Q., W. Ren, Z. Chen, L. Yin, F. Li, H. Cong, and H. Cheng. 2009. Semiconducting properties of cup-stacked carbon nanotubes. Carbon 47 (3):731–6. doi:10.1016/j.carbon.2008.11.005.
  • Liu, X., R. Yan, J. Zhu, J. Zhang, and X. Liu. 2015. Growing TiO2 nanotubes on graphene nanoplatelets and applying the nanonanocomposite as scaffold of electrochemical tyrosinase biosensor. Sensors and Actuators B: Chemical 209:328–35. doi:10.1016/j.snb.2014.11.124.
  • López, M. S., and B. López-Ruiz. 2018. Electrochemical biosensor based on ionic liquid polymeric microparticles. An analytical platform for catechol. Microchemical Journal 138:173–9. doi:10.1016/j.microc.2018.01.011.
  • Lou, C., T. Jing, J. Zhou, J. Tian, Y. Zheng, C. Wang, Z. Zhao, J. Lin, H. Liu, C. Zhao, et al. 2020. Laccase immobilized polyaniline/magnetic graphene composite electrode for detecting hydroquinone. International Journal of Biological Macromolecules 149:1130–8. doi:10.1016/j.ijbiomac.2020.01.248.
  • Machado, C. R. A., Y. G. Leite e Silva, L. P. S. Pereira, E. M. Saggioro, and J. C. Campos. 2015. Avaliação Da Adsorção de Fenol e Bisfenol A Em Carvões Ativados de Diferentes Matrizes Carbonáceas. Ambiente e Agua - An Interdisciplinary Journal of Applied Science 10 (4):445–58. doi:10.4136/ambi-agua.1698.
  • Manzetti, S., and J. P. Gabriel. 2019. Methods for dispersing carbon nanotubes for nanotechnology applications: Liquid nanocrystals, suspensions, polyelectrolytes, colloids and organization control. International Nano Letters 9 (1):31–49. doi:10.1007/s40089-018-0260-4.
  • Moraes, I. R., E. Y. Matsubara, and J. M. Rosolen. 2008. Electrochemical evidence of strong electronic interaction of PtRu on carbon nanotubes with high density of defects. Electrochemical and Solid-State Letters 11 (12):K109. doi:10.1149/1.2990222.
  • Neto, D. B. F., F. F. S. Xavier, E. Y. Matsubara, R. Parmar, R. Gunnella, and J. M. Rosolen. 2020. The role of nanoparticle concentration and CNT coating in high-performance polymer-free micro/nanostructured carbon nanotube-nanoparticle composite electrode for Li intercalation. Journal of Electroanalytical Chemistry 858:113826. doi:10.1016/j.jelechem.2020.113826.
  • Raghu, P., T. M. Reddy, K. Reddaiah, L. R. Jaidev, and G. Narasimha. 2013. A novel electrochemical biosensor based on horseradish peroxidase immobilized on Ag-nanoparticles/poly(l-arginine) modified carbon paste electrode toward the determination of pyrogallol/hydroquinone. Enzyme and Microbial Technology 52 (6–7):377–85. doi:10.1016/j.enzmictec.2013.02.010.
  • Rosolen, J. M., and E. Y. Matsubara. 2019. Processo para obtenção seletiva de compósitos de nanotubos de carbono semicondutores e hidrofílicos com alta densidade de defeitos estruturais, nanotubos de carbono semicondutores e hidrofílicos e processo para tornar semicondutora e/ou hidrofílica a superfície de carbonos, materiais carbonáceos e qualquer substrato. Patent code PI0901840.
  • Rosolen, J. M., E. Y. Matsubara, M. S. Marchesin, S. M. Lala, L. A. Montoro, and S. Tronto. 2006. Carbon nanotube/felt composite electrodes without polymer binders. Journal of Power Sources 162 (1):620–8. doi:10.1016/j.jpowsour.2006.06.087.
  • Signori, C. A., and O. F. Filho. 1994. Biossensor Amperométrico Para a Determinação de Fenóis Usando Em Extrato Bruto de Inhame (Alocasia Macrorhiza) [Amperometric Biosensor for the Determination of Phenols Using Crude Extract of Yam (Alocasia Macrorhiza)]. Quimica Nova 17 (1):38–42.
  • Silva, G. R., E. Y. Matsubara, P. Corio, J. M. Rosolen, and M. Mulato. 2007. Carbon felt/carbon nanotubes/pani as pH sensor. Materials Research Society Symposium Proceedings. Vol. 994, 1018–EE14.
  • Tang, W., M. Zhang, W. Li, and X. Zeng. 2014. An electrochemical sensor based on polyaniline for monitoring hydroquinone and its damage on DNA. Talanta 127:262–8. doi:10.1016/j.talanta.2014.03.069.
  • Tîlmaciu, C., and M. C. Morris. 2015. Carbon nanotube biosensors. Frontiers in Chemistry 3:59. doi:10.3389/fchem.2015.00059.
  • Wang, Y., and Y. Hasebe. 2011. Tyrosinase-modified carbon felt-based flow-biosensors: The role of ultra-sonication in shortening the enzyme immobilization time and improving the sensitivity for p-chlorophenol. Journal of Environmental Sciences 23 (6):1038–43. doi:10.1016/S1001-0742(10)60511-6.
  • Wang, Y., F. Zhai, Y. Hasebe, H. Jia, and Z. Zhang. 2018. A highly sensitive electrochemical biosensor for phenol derivatives using a graphene oxide-modified tyrosinase electrode. Bioelectrochemistry (Amsterdam, Netherlands) 122:174–82. doi:10.1016/j.bioelechem.2018.04.003.
  • Wee, Y., S. Park, Y. H. Kwon, Y. Ju, K. Yeon, and J. Kim. 2019. Tyrosinase-immobilized CNT based biosensor for highly-sensitive detection of phenolic compounds. Biosensors and Bioelectronics 132:279–85. doi:10.1016/j.bios.2019.03.008.
  • Wong, L. S., F. Khan, and J. Micklefield. 2009. Selective covalent protein immobilization: Strategies and applications. Chemical Reviews 109 (9):4025–53. doi:10.1021/cr8004668.
  • Yang, J., D. Li, J. Fu, F. Huang, and Q. Wei. 2016. TiO2-CuCNFs based laccase biosensor for enhanced electrocatalysis in hydroquinone detection. Journal of Electroanalytical Chemistry 766:16–23. doi:10.1016/j.jelechem.2016.01.030.
  • Yazdi, A. A., L. D'Angelo, N. Omer, G. Windiasti, X. Lu, and J. Xu. 2016. Carbon nanotube modification of microbial fuel cell electrodes. Biosensors & Bioelectronics 85:536–52. doi:10.1016/j.bios.2016.05.033.
  • Zhang, Y., G. Zeng, L. Tang, D. Huang, X. Jiang, and Y. Chen. 2007. A Hydroquinone Biosensor Using Modified core-shell magnetic nanoparticles supported on carbon paste electrode. Biosensors & Bioelectronics 22 (9-10):2121–6. doi:10.1016/j.bios.2006.09.030.
  • Zhou, Y., Y. Fang, and R. Ramasamy. 2019. Non-covalent functionalization of carbon nanotubes for electrochemical biosensor development. Sensors 19 (2):392. doi:10.3390/s19020392.
  • Zhou, Z., Y. Wang, Z.Q. Zhang, Y. Zhang, Y. Hasebe, Y. M.Song, and C. P. Wang. 2017. Immobilization of tyrosinase on (3-aminopropyl)triethoxysilane-functionalized carbon felt-based flow-through detectors for electrochemical detection of phenolic compounds. Kemija u Industriji 66 (7–8):373–80. doi:10.15255/KUI.2017.017.
  • Zou, L., R. Lv, F. Kang, L. Gan, and W. Shen. 2008. Preparation and application of bamboo-like carbon nanotubes in lithium ion batteries. Journal of Power Sources 184 (2):566–9. doi:10.1016/j.jpowsour.2008.02.030.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.