191
Views
5
CrossRef citations to date
0
Altmetric
Chemometrics

Enhanced Selectivity of Ultraviolet-Visible Absorption Spectroscopy with Trilinear Decomposition on Spectral pH Measurements for the Interference-Free Determination of Rutin and Isorhamnetin in Chinese Herbal Medicine

, , , , , , , & ORCID Icon show all
Pages 2750-2768 | Received 29 Dec 2020, Accepted 07 Feb 2021, Published online: 24 Feb 2021

References

  • Appellof, C. J., and E. R. Davidson. 1981. Strategies for analyzing data from video fluorometric monitoring of liquid chromatographic effluents. Analytical Chemistry 53 (13):2053–6. doi:10.1021/ac00236a025.
  • Booksh, K. S., and B. R. Kowalski. 1994. Theory of analytical chemistry. Analytical Chemistry 66 (15):782A–91. doi:10.1021/ac00087a718.
  • Booksh, K. S., A. R. Muroski, and M. L. Myrick. 1996. Single-measurement excitation/emission matrix spectrofluorometer for determination of hydrocarbons in ocean water. 2. Calibration and quantitation of naphthalene and styrene. Analytical Chemistry 68 (20):3539–44. doi:10.1021/ac9602534.
  • Bro, R. 1997. PARAFAC. Tutorial and applications. Chemometrics and Intelligent Laboratory Systems 38 (2):149–71. doi:10.1016/S0169-7439(97)00032-4.
  • Bro, R., and H. A. Kiers. 2003. A new efficient method for determining the number of components in PARAFAC models. Journal of Chemometrics 17 (5):274–86. doi:10.1002/cem.801.
  • Cabrera-Bañegil, M., N. Lavado Rodas, M. H. Prieto Losada, F. Blanco Cipollone, M. J. Moñino Espino, A. Muñoz de la Peña, and I. Durán-Merás. 2020. Evolution of polyphenols content in plum fruits (Prunus salicina) with harvesting time by second-order excitation-emission fluorescence multivariate calibration. Microchemical Journal 158:105299. doi:10.1016/j.microc.2020.105299.
  • Carroll, J. D., and J. J. Chang. 1970. Analysis of individual differences in multidimensional scaling via an N-way generalization of “Eckart-Young” decomposition. Psychometrika 35 (3):283–319. doi:10.1007/BF02310791.
  • Chinese Pharmacopoeia Commission. 2020a. The pharmacopoeia of the People's Republic of China (Part I). Beijing: Chinese Medical Science and Technology Press. In page 123.
  • Chinese Pharmacopoeia Commission. 2020b. The pharmacopoeia of the People's Republic of China (Part I). Beijing: Chinese Medical Science and Technology Press. In pages 34, 192, 370, 414, 754, and 1145.
  • Chinese Pharmacopoeia Commission. 2020c. The pharmacopoeia of the People's Republic of China (Part I). Beijing: Chinese Medical Science and Technology Press. In page 221.
  • Chinese Pharmacopoeia Commission. 2020d. The pharmacopoeia of the People's Republic of China (Part I). Beijing: Chinese Medical Science and Technology Press. In page 338.
  • Chinese Pharmacopoeia Commission. 2020e. The pharmacopoeia of the People's Republic of China (Part I). Beijing: Chinese Medical Science and Technology Press. In page 339.
  • Christian, G. D., P. K. Dasgupta, and K. A. Schug. 2014. Analytical chemistry. 7th ed. Hoboken: John Wiley & Sons.
  • Dinç, E., N. Ünal, and Z. C. Ertekin. 2020. Novel three-dimensional resolution of a pH and ultraviolet-visible absorption spectral dataset for the determination of desloratadine in a pharmaceutical product and its acid dissociation constant. Analytical Letters 53 (12):1871–87. doi:10.1080/00032719.2020.1721002.
  • El-Sheikh, A. H., and Y. S. Al-Degs. 2013. Spectrophotometric determination of food dyes in soft drinks by second order multivariate calibration of the absorbance spectra-pH data matrices. Dyes and Pigments 97 (2):330–9. doi:10.1016/j.dyepig.2013.01.007.
  • Escandar, G. M., H. C. Goicoechea, A. Muñoz de la Peña, and A. C. Olivieri. 2014. Second- and higher-order data generation and calibration: A tutorial. Analytica Chimica Acta 806:8–26. doi:10.1016/j.aca.2013.11.009.
  • Fang, K. T. 1994. Uniform design and uniform design tables. Beijing: Science Press.
  • Granero, A. M., G. D. Pierini, S. N. Robledo, M. S. Di Nezio, H. Fernández, and M. A. Zon. 2016. Simultaneous determination of ascorbic and uric acids and dopamine in human serum samples using three-way calibration with data from square wave voltammetry. Microchemical Journal 129:205–12. doi:10.1016/j.microc.2016.07.004.
  • Gu, H. W., H. L. Wu, S. S. Li, X. L. Yin, Y. Hu, H. Xia, H. Fang, R. Q. Yu, P. Y. Yang, and H. J. Lu. 2016. Chemometrics-enhanced full scan mode of liquid chromatography-mass spectrometry for the simultaneous determination of six co-eluted sulfonylurea-type oral antidiabetic agents in complex samples. Chemometrics and Intelligent Laboratory Systems 155:62–72. doi:10.1016/j.chemolab.2016.04.001.
  • Harshman, R. A. 1970. Foundations of the PARAFAC procedure: Models and conditions for an "explanatory" multimodal factor analysis. UCLA Working Papers in Phonetics 16:1–84. Accessed October 24, 2020. https://www.psychology.uwo.ca/faculty/harshman/wpppfac0.pdf.
  • Hu, Y., H. L. Wu, X. L. Yin, H. W. Gu, C. Kang, S. X. Xiang, H. Xia, and R. Q. Yu. 2015. Chemometrics-assisted determination of amiloride and triamterene in biological fluids with overlapped peaks and unknown interferences. Bioanalysis 7 (13):1685–97. doi:10.4155/bio.15.88.
  • Kang, C., H. L. Wu, J. J. Song, H. Xu, Y. J. Liu, Y. J. Yu, X. H. Zhang, and R. Q. Yu. 2015. A flexible trilinear decomposition algorithm for three-way calibration based on the trilinear component model and a theoretical extension of the algorithm to the multilinear component model. Analytica Chimica Acta 878:63–77. doi:10.1016/j.aca.2015.03.034.
  • Kang, C., H. L. Wu, S. X. Xiang, L. X. Xie, Y. J. Liu, Y. J. Yu, J. J. Sun, and R. Q. Yu. 2014. Simultaneous determination of aromatic amino acids in different systems using three-way calibration based on the PARAFAC-ALS algorithm coupled with EEM fluorescence: Exploration of second-order advantages. Analytical Methods 6 (16):6358–68. doi:10.1039/C4AY00943F.
  • Kang, C., H. L. Wu, M. L. Xu, X. F. Yan, Y. J. Liu, and R. Q. Yu. 2019. Simultaneously quantifying intracellular FAD and FMN using a novel strategy of intrinsic fluorescence four-way calibration. Talanta 197:105–12. doi:10.1016/j.talanta.2018.12.076.
  • Kang, C., H. L. Wu, C. Zhou, S. X. Xiang, X. H. Zhang, Y. J. Yu, and R. Q. Yu. 2016. Quantitative fluorescence kinetic analysis of NADH and FAD in human plasma using three- and four-way calibration methods capable of providing the second-order advantage. Analytica Chimica Acta 910:36–44. doi:10.1016/j.aca.2015.12.047.
  • Kolda, T. G., and B. W. Bader. 2009. Tensor decompositions and applications. SIAM Review 51 (3):455–500. doi:10.1137/07070111X.
  • Liu, Y. T., J. Deng, L. An, J. Liang, F. Chen, and H. Wang. 2011. Spectrophotometric determination of melamine in milk by rank annihilation factor analysis based on pH gradual change-UV spectral data. Food Chemistry 126 (2):745–50. doi:10.1016/j.foodchem.2010.11.057.
  • Liu, Y. J., G. Postma, H. L. Wu, H. W. Gu, C. Kang, J. Jansen, and L. Duponchel. 2019. Angle distribution of loading subspace (ADLS) for estimating chemical rank in multivariate analysis: Applications in spectroscopy and chromatography. Talanta 194:90–7. doi:10.1016/j.talanta.2018.10.008.
  • Long, W. J., H. L. Wu, T. Wang, L. X. Xie, Y. Hu, H. Fang, L. Cheng, Y. J. Ding, and R. Q. Yu. 2018. Chemometrics-assisted liquid chromatography with full scan mass spectrometry for the interference-free determination of glucocorticoids illegally added to face masks. Journal of Separation Science 41 (18):3527–37. doi:10.1002/jssc.201800333.
  • Lu, S. H., H. L. Zhai, B. Q. Zhao, B. Yin, and L. Zhu. 2020. A novel approach to the analysis of chemical third-order data. Journal of Chemical Information and Modeling 60 (10):4750–6. doi:10.1021/acs.jcim.0c00554.
  • Muñoz de la Peña, A., H. C. Goicoechea, G. M. Escandar, and A. C. Olivieri. 2015. Fundamentals and analytical applications of multiway calibration. Amsterdam: Elsevier.
  • Oca, M. L., M. C. Ortiz, A. Herrero, and L. A. Sarabia. 2013. Optimization of a GC/MS procedure that uses parallel factor analysis for the determination of bisphenols and their diglycidyl ethers after migration from polycarbonate tableware. Talanta 106:266–80. doi:10.1016/j.talanta.2012.10.086.
  • Olivieri, A. C. 2008. Analytical advantages of multivariate data processing. One, two, three, infinity? Analytical Chemistry 80 (15):5713–20. doi:10.1021/ac800692c.
  • Olivieri, A. C. 2014. Analytical figures of merit: From univariate to multiway calibration. Chemical Reviews 114 (10):5358–78. doi:10.1021/cr400455s.
  • Olivieri, A. C., and G. M. Escandar. 2014. Practical three-way calibration. Amsterdam: Elsevier.
  • Olivieri, A. C., and K. Faber. 2012. New developments for the sensitivity estimation in four-way calibration with the quadrilinear parallel factor model. Analytical Chemistry 84 (1):186–93. doi:10.1021/ac202268k.
  • Olivieri, A. C., and N. K. M. Faber. 2004. Standard error of prediction in parallel factor analysis of three-way data. Chemometrics and Intelligent Laboratory Systems 70 (1):75–82. doi:10.1016/j.chemolab.2003.10.005.
  • Ouyang, Y. Z., H. L. Wu, H. Fang, T. Wang, X. D. Sun, Y. Y. Chang, Y. J. Ding, and R. Q. Yu. 2020. Rapid and simultaneous determination of three fluoroquinolones in animal-derived foods using excitation-emission matrix fluorescence coupled with second-order calibration method. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 224:117458. doi:10.1016/j.saa.2019.117458.
  • Samari, F., B. Hemmateenejad, and M. Shamsipur. 2010. Spectrophotometric determination of carminic acid in human plasma and fruit juices by second order calibration of the absorbance spectra-pH data matrices coupled with standard addition method. Analytica Chimica Acta 667 (1–2):49–56. doi:10.1016/j.aca.2010.04.007.
  • Skoog, D. A., F. J. Holler, and S. R. Crouch. 2018. Principles of instrumental analysis. 7th ed. Boston: Cengage Learning.
  • Skoog, D. A., D. M. West, F. J. Holler, and S. R. Crouch. 2014. Fundamentals of analytical chemistry. 9th ed. Belmont: Cengage Learning.
  • Tan, F. Y., C. Tan, A. P. Zhao, and M. L. Li. 2011. Simultaneous determination of free amino acid content in tea infusions by using high-performance liquid chromatography with fluorescence detection coupled with alternating penalty trilinear decomposition algorithm. Journal of Agricultural and Food Chemistry 59 (20):10839–47. doi:10.1021/jf2023325.
  • Tauler, R. 1995. Multivariate curve resolution applied to second-order data. Chemometrics and Intelligent Laboratory Systems 30 (1):133–46. doi:https://doi.org/10.1016/0169-7439. (95)00047-X. doi:10.1016/0169-7439(95)00047-X.
  • Tu, Y. Y. 2011. The discovery of artemisinin (qinghaosu) and gifts from Chinese medicine. Nature Medicine 17 (10):1217–20. doi:10.1038/nm.2471.
  • Wu, H. L., W. J. Long, T. Wang, M. Y. Dong, and R. Q. Yu. 2020. Recent applications of multiway calibration methods in environmental analytical chemistry: A review. Microchemical Journal 159:105575. doi:10.1016/j.microc.2020.105575.
  • Wu, H. L., M. Shibukawa, and K. Oguma. 1998. An alternating trilinear decomposition algorithm with application to calibration of HPLC-DAD for simultaneous determination of overlapped chlorinated aromatic hydrocarbons. Journal of Chemometrics 12 (1):1–26. doi:10.1002/(SICI)1099-128X(199801/02)12:1<1::AID-CEM492>3.0.CO;2-4.
  • Yan, X. F., Y. M. Liang, B. Zhou, J. Bin, and C. Kang. 2020. Enhancing the selectivity of liquid chromatography-mass spectrometry by using trilinear decomposition on LC-MS data: An application to three-way calibration of coeluting analytes in human plasma. Journal of Separation Science 43 (13):2718–27. doi:10.1002/jssc.202000151.
  • Yuan, J. T., L. F. Liao, Y. W. Lin, C. A. Deng, and B. He. 2008. Determination of Sudan I in chilli powder from solvent components gradual change-visible spectra data using second order calibration algorithms. Analytica Chimica Acta 607 (2):160–7. doi:10.1016/j.aca.2007.11.047.
  • Zhang, X. H., H. L. Wu, J. Y. Wang, D. Z. Tu, C. Kang, J. Zhao, Y. Chen, X. X. Miu, and R. Q. Yu. 2013. Fast HPLC-DAD quantification of nine polyphenols in honey by using second-order calibration method based on trilinear decomposition algorithm. Food Chemistry 138 (1):62–9. doi:10.1016/j.foodchem.2012.10.033.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.