134
Views
2
CrossRef citations to date
0
Altmetric
Bioanalytical

Intracellular Calcium Increases Due to Curcumin Measured Using a Single-Cell Biochip

, &
Pages 2769-2776 | Received 11 Oct 2020, Accepted 07 Feb 2021, Published online: 25 Feb 2021

References

  • Adan, A., G. Alizada, Y. Kiraz, Y. Baran, and A. Nalbant. 2017. Flow cytometry: Basic principles and applications. Critical Reviews in Biotechnology 37 (2):163–76. doi:10.3109/07388551.2015.1128876.
  • Anand, P., C. Sundaram, S. Jhurani, A. B. Kunnumakkara, and B. B. Aggarwal. 2008. Curcumin and cancer: An “old-age” disease with an “age-old” solution. Cancer Letters 267 (1):133–64. doi:10.1016/j.canlet.2008.03.025.
  • Basnet, P., and N. Skalko-Basnet. 2011. Curcumin: An anti-inflammatory molecule from a curry spice on the path to cancer treatment. Molecules (Basel, Switzerland) 16 (6):4567–98. doi:10.3390/molecules16064567.
  • Das, R., A. Roy, N. Dutta, and H. K. Majumder. 2008. Reactive oxygen species and imbalance of calcium homeostasis contributes to curcumin induced programmed cell death in Leishmania donovani. Apoptosis: An International Journal on Programmed Cell Death 13 (7):867–82. doi:10.1007/s10495-008-0224-7.
  • Ebashi, S. 1961. Calcium binding activity of vesicular relaxing factor. The Journal of Biochemistry 50 (3):236–44. doi:10.1093/oxfordjournals.jbchem.a127439.
  • Gee, K. R., K. A. Brown, W. N. U. Chen, J. Bishop-Stewart, D. Gray, and I. Johnson. 2000. Chemical and physiological characterization of fluo-4 Ca(2+)-indicator dyes. Cell Calcium 27 (2):97–106. doi:10.1054/ceca.1999.0095.
  • Huang, H. C., P. Chang, S. Y. Lu, B. W. Zheng, and Z. F. Jiang. 2015. Protection of curcumin against amyloid-β-induced cell damage and death involves the prevention from NMDA receptor-mediated intracellular Ca2+ elevation. Journal of Receptor and Signal Transduction Research 35 (5):450–7. doi:10.3109/10799893.2015.1006331.
  • Jiang, Y., V. D. Marinescu, Y. Xie, M. Jarvius, N. P. Maturi, C. Haglund, S. Olofsson, N. Lindberg, T. Olofsson, C. Leijonmarck, et al. 2017. Glioblastoma cell malignancy and drug sensitivity are affected by the cell of origin. Cell Reports 18 (4):977–90. doi:10.1016/j.celrep.2017.01.003.
  • Kaneko, Y., and A. Szallasi. 2014. Transient receptor potential (TRP) channels: A clinical perspective. British Journal of Pharmacology 171 (10):2474–507. doi:10.1111/bph.12414.
  • Khamenehfar, A., T. V. Beischlag, P. J. Russell, M. T. P. Ling, C. Nelson, and P. C. H. Li. 2015. Label-free isolation of a prostate cancer cell among blood cells and the single-cell measurement of drug accumulation using an integrated microfluidic chip. Biomicrofluidics 9 (6):064104. doi:10.1063/1.4934715.
  • Khamenehfar, A., M. K. Gandhi, Y. Chen, D. E. Hogge, and P. C. H. Li. 2016. Dielectrophoretic microfluidic chip enables single-cell measurements for multidrug resistance in heterogeneous acute myeloid leukemia patient samples. Analytical Chemistry 88 (11):5680–8. doi:10.1021/acs.analchem.5b04446.
  • Khamenehfar, A., C. P. L. Wan, P. C. H. Li, K. Letchford, and H. M. Burt. 2014. Same-single-cell analysis using the microfluidic biochip to reveal drug accumulation enhancement by an amphiphilic diblock copolymer drug formulation. Analytical and Bioanalytical Chemistry 406 (28):7071–83. doi:10.1007/s00216-014-8151-7.
  • Li, X., J. Huang, G. F. Tibbits, and P. C. H. Li. 2007. Real-time monitoring of intracellular calcium dynamic mobilization of a single cardiomyocyte in a microfluidic chip pertaining to drug discovery. Electrophoresis 28 (24):4723–33. doi:10.1002/elps.200700312.
  • Li, X., and P. C. H. Li. 2005. Microfluidic selection and retention of a single cardiac myocyte, on-chip dye loading, cell contraction by chemical stimulation, and quantitative fluorescent analysis of intracellular calcium. Analytical Chemistry 77 (14):4315–22. doi:10.1021/ac048240a.
  • Li, X., X. Xue, and P. C. H. Li. 2009. Real-time detection of the early event of cytotoxicity of herbal ingredients on single leukemia cells studied in a microfluidic biochip. Integrative Biology: Quantitative Biosciences from Nano to Macro 1 (1):90–8. doi:10.1039/b812987h.
  • Lu, J., Y. T. Ju, C. Li, F. Z. Hua, G. H. Xu, and Y. H. Hu. 2016. Effect of TRPV1 combined with lidocaine on cell state and apoptosis of U87-MG glioma cell lines. Asian Pacific Journal of Tropical Medicine 9 (3):288–92. doi:10.1016/j.apjtm.2016.01.030.
  • Noghabi, H. S., M. Soo, A. Khamenehfar, and P. C. H. Li. 2019. Dielectrophoretic trapping of single leukemic cells using the conventional and compact optical measurement systems. Electrophoresis 40 (10):1478–85. doi:10.1002/elps.201800451.
  • Peng, X. Y., and P. C. H. Li. 2005. Extraction of pure cellular fluorescence by cell scanning in a single-cell microchip. Lab on a Chip 5 (11):1298–302. doi:10.1039/b509422d.
  • Ponten, J., and E. Macintyre. 1968. Long term culture of normal and neoplastic human glia. Acta Pathologica et Microbiologica Scandinavica 74 (4):465–86. doi:10.1111/j.1699-0463.1968.tb03502.x.
  • Rieseberg, M., C. Kasper, K. F. Reardon, and T. Scheper. 2001. Flow cytometry in biotechnology. Applied Microbiology and Biotechnology 56 (3-4):350–60. doi:10.1007/s002530100673.
  • Seo, J., Kim, B. D. N. T. Dhanasekaran, D. N. B. K. Tsang, and Y. S. Song. 2016. Curcumin induces apoptosis by inhibiting sarco/endoplasmic reticulum Ca2+ ATPase activity in ovarian cancer cells. Cancer Letters 371 (1):30–7. doi:10.1016/j.canlet.2015.11.021.
  • Shin, D. H., E. Y. Seo, B. Pang, J. H. Nam, H. S. Kim, W. K. Kim, and S. J. Kim. 2011. Inhibition of Ca2+-release-activated Ca2+ channel (CRAC) and K + channels by curcumin in Jurkat-T cells. Journal of Pharmacological Sciences 115 (2):144–54. doi:10.1254/jphs.10209fp.
  • Takahashi, A., P. Camacho, J. D. Lechleiter, and B. Herman. 1999. Measurement of intracellular calcium. Physiological Reviews 79 (4):1089–125. doi:10.1152/physrev.1999.79.4.1089.
  • Takikawa, M., Y. Kurimoto, and T. Tsuda. 2013. Curcumin stimulates glucagon-like peptide-1 secretion in GLUTag cells via Ca2+/calmodulin-dependent kinase II activation. Biochemical and Biophysical Research Communications 435 (2):165–70. doi:10.1016/j.bbrc.2013.04.092.
  • Xu, X., D. Chen, B. Ye, F. Zhong, and G. Chen. 2015. Curcumin induces the apoptosis of non-small cell lung cancer cells through a calcium signaling pathway. International Journal of Molecular Medicine 35 (6):1610–6. doi:10.3892/ijmm.2015.2167.
  • Zhang, L., X. Cheng, S. Xu, J. Bao, and H. Yu. 2018. Curcumin induces endoplasmic reticulum stress-associated apoptosis in human papillary thyroid carcinoma BCPAP cells via disruption of intracellular calcium homeostasis. Medicine 97 (24):e11095. doi:10.1097/MD.0000000000011095.
  • Zhang, X., Q. Chen, Y. Wang, W. Peng, and H. Cai. 2014. Effects of curcumin on ion channels and transporters. Frontiers in Physiology 5:94. doi:10.3389/fphys.2014.00094.
  • Zhang, X., H. Yin, J. M. Cooper, and S. J. Haswell. 2006. A microfluidic-based system for analysis of single cells based on Ca2+ flux. Electrophoresis 27 (24):5093–100. doi:10.1002/elps.200600390.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.