388
Views
3
CrossRef citations to date
0
Altmetric
Sensors

Determination of Glucose by a Molecular Capacitor Array Based Using a 3-(Acrylamido) Phenylboronic Acid Prepared Molecularly Imprinted Polyacrylamide Cryogel

, , , , , , & show all
Pages 2789-2800 | Received 05 Jan 2021, Accepted 11 Feb 2021, Published online: 01 Mar 2021

References

  • Alexander, S., P. Baraneedharan, S. Balasubrahmanyan, and S. Ramaprabhu. 2017. Highly sensitive and selective non enzymatic electrochemical glucose sensors based on graphene oxide-molecular imprinted polymer. Materials Science & Engineering. C, Materials for Biological Applications 78:124–9. doi: 10.1016/j.msec.2017.04.045.
  • Chamoli, S. K., S. C. Singh, and C. L. Guo. 2020. Design of extremely sensitive refractive index sensors in infrared for blood glucose detection. IEEE Sensors Journal 20 (9):4628–34. doi: 10.1109/JSEN.2020.2964715.
  • Chen, H., G. K. Fan, J. Zhao, M. J. Qiu, P. Sun, Y. F. Fu, D. X. Han, and G. F. Cui. 2019. A portable micro glucose sensor based on copper-based nanocomposite structure. New Journal of Chemistry 43 (20):7806–13. doi: 10.1039/C9NJ00888H.
  • Cheng, Z. L., E. K. Wang, and X. R. Yang. 2001. Capacitive detection of glucose using molecularly imprinted polymers. Biosensors & Bioelectronics 16 (3):179–85. doi: 10.1016/S0956-5663(01)00137-3.
  • Diouf, A., B. Bouchikhi, and N. E. Bari. 2019. A nonenzymatic electrochemical glucose sensor based on molecularly imprinted polymer and its application in measuring saliva glucose. Materials Science & Engineering. C, Materials for Biological Applications 98:1196–209. doi: 10.1016/j.msec.2019.01.001.
  • Han, X. J., X. F. Ji, Q. Zhang, J. W. Sun, P. X. Sun, W. J. Pan, J. Wang, and C. Yang. 2020. Giant "molecular capacitor" arrays - portable sensors to determine ionizable compounds. Journal of Electroanalytical Chemistry 865:114108. doi: 10.1016/j.jelechem.2020.114108.
  • Hu, B., Y. Lu, K. Y. Cui, and Y. S. Yan. 2018. Molecular imprinting polymers based on boric acid-modified CdTe QDs for sensitive detection of glucose. Nano 13 (04):1850046. doi: 10.1142/S1793292018500467.
  • Juan, C. G., E. Bronchalo, B. Potelon, C. Quendo, and J. M. Sabater-Navarro. 2019. Glucose concentration measurement in human blood plasma solutions with microwave sensors. Sensors 19 (17):3779. doi: 10.3390/s19173779.
  • Khoshroo, A., K. Sadrjavadi, M. Taran, and A. Fattahi. 2020. Electrochemical system designed on a copper tape platform as a nonenzymatic glucose sensor. Sensors and Actuators B: Chemical 325:128778. doi: 10.1016/j.snb.2020.128778.
  • Li, R. S., X. Deng, and L. F. Xia. 2020. Non-enzymatic sensor for determination of glucose based on PtNi nanoparticles decorated graphene. Scientific Reports 10 (1):16788. doi: 10.1038/s41598-020-73567-2.
  • Li, T. J., Q. Y. Liu, H. M. Hu, X. M. Sun, Q. Hao, Y. M. Guo, and J. J. You. 2019. Solid phase extraction using molecular imprinted polymers and C18 solid phase extraction cartridges for phthalate determination in Penaeus vannamei by GC-MS. Archivos Latinoamericanos de Nutrición 69:13–20.
  • Okuda, J., J. Wakai, S. Igarashi, and K. Sode. 2004. Engineered PQQ glucose dehydrogenase based enzyme sensor for continuous glucose monitoring. Analytical Letters 37 (9):1847–57. doi: 10.1081/AL-120039430.
  • Qiu, K. Z., X. Chen, S. Q. Ci, W. P. Li, Z. Bo, K. F. Cen, and Z. H. Wen. 2016. Facile preparation of nickel nanoparticle-modified carbon nanotubes with application as a nonenzymatic electrochemical glucose sensor. Analytical Letters 49 (4):568–78. doi: 10.1080/00032719.2015.1076829.
  • Saad, W. H. M., N. A. Rahman, M. S. Karis, S. L. Chia, S. A. A. Karim, M. H. Talib, and R. Msja. 2020. Analysis on continuous wearable device for blood glucose detection using GSR sensor. International Journal of Nanoelectronics and Materials 13:9–16.
  • Sehit, E., J. Drzazgowska, D. Buchenau, C. Yesildag, M. Lensen, and Z. Altintas. 2020. Ultrasensitive nonenzymatic electrochemical glucose sensor based on gold nanoparticles and molecularly imprinted polymers. Biosensors and Bioelectronics 165:112432. doi: 10.1016/j.bios.2020.112432.
  • Sharma, P. S., A. Pietrzyk-Le, F. D'Souza, and W. Kutner. 2012. Electrochemically synthesized polymers in molecular imprinting for chemical sensing. Analytical and Bioanalytical Chemistry 402 (10):3177–204. doi: 10.1007/s00216-011-5696-6.
  • Shen, P. F., and Y. S. Xia. 2014. Synthesis-modification integration: one-step fabrication of boronic acid functionalized carbon dots for fluorescent blood sugar sensing. Analytical Chemistry 86 (11):5323–9. doi: 10.1021/ac5001338.
  • Wang, Q., Z. P. Wang, Q. Y. Dong, R. X. Yu, H. H. Zhu, Z. R. Zou, H. M. Yu, K. Huang, X. Jiang, and X. L. Xiong. 2020. NiCl(OH) nanosheet array as a high sensitivity electrochemical sensor for detecting glucose in human serum and saliva. Microchemical Journal 158:105184. doi: 10.1016/j.microc.2020.105184.
  • Wang, X., and S. Uchiyama. 2008. Amperometric glucose sensor fabricated by combining glucose oxidase micelle membrane and aminated glassy carbon electrode. Analytical Letters 41 (7):1173–83. doi: 10.1080/00032710802052429.
  • Wang, X., F. F. Yang, L. P. Zhang, Y. P. Huang, and Z. S. Liu. 2018. A polyhedral oligomeric silsesquioxane/molecular sieve codoped molecularly imprinted polymer for gastroretentive drug-controlled release in vivo. Biomaterials Science 6 (12):3170–7. doi: 10.1039/c8bm01124a.
  • Wang, Y., J. Tang, X. Y. Luo, X. Y. Hu, C. Yang, and Q. Xu. 2011. Development of a sensitive and selective kojic acid sensor based on molecularly imprinted polymer modified electrode in the lab-on-valve system. Talanta 85 (5):2522–7. doi: 10.1016/j.talanta.2011.08.014.
  • Xie, X. W., X. G. Ma, and L. H. Guo. 2019. Molecularly imprinting polymers for detection and removal of environmental endocrine disruptors. Progress in Chemistry 31:1749–58. doi: 10.7536/pc190529.
  • Yang, C., X. F. Ji, W. Q. Cao, J. Wang, Q. Zhang, T. L. Zhong, and Y. Wang. 2019a. Molecularly imprinted polymer based sensor directly responsive to attomole bovine serum albumin. Talanta 196:402–7. doi: 10.1016/j.talanta.2018.12.097.
  • Yang, C., X. F. Ji, W. Q. Cao, J. Wang, Q. Zhang, T. L. Zhong, and Y. Wang. 2019b. An ultra sensitive and selective impedance sensor based on protein-imprinted polymer. Sensors and Actuators B: Chemical 282:818–23. doi: 10.1016/j.snb.2018.11.107.
  • Yang, C., Y. R. Liu, Y. Zhang, J. Wang, L. L. Tian, Y. N. Yan, W. Q. Cao, and Y. Y. Wang. 2017. Depletion of abundant human serum proteins by per se imprinted cryogels based on sample heterogeneity. Proteomics 17 (9):1600284. doi: 10.1002/pmic.201600284.
  • Yang, C., Y. Zhang, W. Q. Cao, X. F. Ji, J. Wang, Y. N. Yan, T. L. Zhong, and Y. Wang. 2018. Synthesis of molecularly imprinted cryogels to deplete abundant proteins from bovine serum. Polymers 10:97. doi: 10.3390/polym10010097.
  • Yang, C., X. L. Zhou, Y. R. Liu, J. Wang, L. L. Tian, Y. Zhang, and X. Y. Hu. 2016. Charged groups synergically enhance protein imprinting in amphoteric polyacrylamide cryogels. Journal of Applied Polymer Science 133 (34):6. doi: 10.1002/app.43851.
  • Yuan, Y., Z. D. Fu, K. Wang, Z. Y. Zhao, H. Li, Z. Wang, and L. P. Wang. 2020. The design and characterization of a hypersensitive glucose sensor: two enzymes co-fixed on a copper phosphate skeleton. Journal of Materials Chemistry B 8 (2):244–50. doi: 10.1039/c9tb02294e.
  • Zhang, J., X. X. Xiao, Q. Q. He, L. F. Huang, S. Li, and F. Wang. 2014. A nonenzymatic glucose sensor based on a copper nanoparticle-zinc oxide nanorod array. Analytical Letters 47 (7):1147–61. doi: 10.1080/00032719.2013.865198.
  • Zhang, K., T. Zhou, K. Kettisen, L. Ye, and L. Bülow. 2019. Chromatographic separation of hemoglobin variants using robust molecularly imprinted polymers. Talanta 199:27–31. doi: 10.1016/j.talanta.2019.01.125.
  • Zhao, Y. X., Z. Y. He, and Z. F. Yan. 2013. Copper@carbon coaxial nanowires synthesized by hydrothermal carbonization process from electroplating wastewater and their use as an enzyme-free glucose sensor. The Analyst 138 (2):559–68. doi: 10.1039/c2an36446h.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.