397
Views
7
CrossRef citations to date
0
Altmetric
Liquid Chromatography

Selective Extraction and Determination of Citrinin in Rye Samples by a Molecularly Imprinted Polymer (MIP) Using Reversible Addition Fragmentation Chain Transfer Precipitation Polymerization (RAFTPP) with High-Performance Liquid Chromatography (HPLC) Detection

, , &
Pages 1697-1708 | Received 01 Dec 2020, Accepted 15 Feb 2021, Published online: 26 Feb 2021

References

  • Akbulut, Y., and A. Zengin. 2020. A molecularly imprinted Whatman paper for clinical detection of propranolol. Sensors and Actuators B: Chemical 304:127276–11. doi:10.1016/j.snb.2019.127276.
  • Akyıldırım, O., F. Kardaş, M. Beytur, H. Yüksek, N. Atar, and M. L. Yola. 2017. Palladium nanoparticles functionalized graphene quantum dots with molecularly imprinted polymer for electrochemical analysis of citrinin. Journal of Molecular Liquids 243:677–81. doi:10.1016/j.molliq.2017.08.085.
  • Altyn, I., and M. Twaruzek. 2020. Mycotoxin contamination concerns of herbs and medicinal plants. Toxins 12:1–13. doi:10.3390/toxins12030182.
  • Anater, A., L. Manyes, G. Meca, E. Ferrer, F. B. Luciano, C. T. Pimpão, and G. Font. 2016. Mycotoxins and their consequences in aquaculture: A review. Aquaculture 451:1–10. doi:10.1016/j.aquaculture.2015.08.022.
  • Atar, N., T. Eren, and M. L. Yola. 2015. A molecular imprinted SPR biosensor for sensitive determination of citrinin in red yeast rice. Food Chemistry 184:7–11. doi:10.1016/j.foodchem.2015.03.065.
  • Atar, N., M. L. Yola, and T. Eren. 2016. Sensitive determination of citrinin based on molecular imprinted electrochemical sensor. Applied Surface Science 362:315–22. doi:10.1016/j.apsusc.2015.11.222.
  • Balajee, S. A., J. W. Baddley, S. W. Peterson, D. Nickle, J. Varga, A. Boey, C. Las-Flörl, J. C. Frisvad, and R. A. Samson, ISHAM Working Group on A. terreus. 2009. Aspergillus alabamensis, a new clinically relevant species in the section Terrei. Eukaryotic Cell 8 (5):713–22. doi:10.1128/ec.00272-08.
  • Boonpangrak, S., M. J. Whitcombe, V. Prachayasittikul, K. Mosbach, and L. Ye. 2006. Preparation of molecularly imprinted polymers using nitroxide-mediated living radical polymerization. Biosensors & Bioelectronics 22 (3):349–54. doi:10.1016/j.bios.2006.04.014.
  • Bräse, S., A. Encinas, J. Keck, and C. F. Nising. 2009. Chemistry and biology of mycotoxins and related fungal metabolites. Chemical Reviews 109 (9):3903–90. doi:10.1021/cr050001f.
  • Clarindo, J. E. S., R. B. Viana, P. Cervini, A. B. F. Silva, and E. T. G. Cavalheiro. 2020. Determination of tetracycline using a graphite-polyurethane composite electrode modified with a molecularly imprinted polymer. Analytical Letters 53 (12):1932–55. doi:10.1080/00032719.2020.1725540.
  • Cui, F. Y., Z. R. Zhou, and H. S. Zhou. 2020. Molecularly imprinted polymers and surface imprinted polymers based electrochemical biosensor for infectious diseases. Sensors 20 (4):996–1. doi:10.3390/s20040996.
  • Gao, W., Li, J. P. Li, P. Z. Huang, Y. Cao, and X. Liu. 2020. Preparation of magnetic molecularly imprinted polymer (MMIP) nanoparticles (NPs) for the selective extraction of tetracycline from milk. Analytical Letters 53 (7):1097–112. doi:10.1080/00032719.2019.1698049.
  • Gu, S., X. Y. Wang, L. Yang, and J. L. Chen. 2019. Development and validation of a bullfrog-immunoaffinity column clean-up for citrinin determination in red yeast rice. Process Biochemistry 78:200–6. doi:10.1016/j.procbio.2019.01.021.
  • Kamra, T., T. Zhou, L. Montelius, J. Schnadt, and L. Ye. 2015. Implementation of molecularly imprinted polymer beads for surface enhanced raman detection. Analytical Chemistry 87 (10):5056–61. doi:10.1021/acs.analchem.5b00774.
  • Klingelhofer, I., and G. E. Morlock. 2019. Lovastatin in lactone and hydroxy acid forms and citrinin in red yeast rice powders analyzed by HPTLC-UV/FLD. Analytical and Bioanalytical Chemistry 411 (25):6655–65. doi:10.1007/s00216-019-02039-y.
  • Latif, U., A. Mujahid, M. Zahid, G. Mustafa, and A. Hayat. 2020. Nanostructured molecularly imprinted photonic polymers for sensing applications. Current Nanoscience 16 (4):495–503. doi:10.2174/1573413715666190206144415.
  • Lhotska, I., D. Satinsky, L. Havlikova, and P. Solich. 2016. A fully automated and fast method using direct sample injection combined with fused-core column on-line SPE-HPLC for determination of ochratoxin A and citrinin in lager beers. Analytical and Bioanalytical Chemistry 408 (12):3319–29. doi:10.1007/s00216-016-9402-6.
  • Li, H., J. Chen, L. Tan, and J. Wang. 2019. Solid-phase extraction using a molecularly imprinted polymer for the selective purification and preconcentration of norfloxacin from seawater. Analytical Letters 52 (18):2896–913. doi:10.1080/00032719.2019.1628245.
  • Markov, K., J. Pleadin, M. Bevardi, N. Vahčić, D. Sokolić-Mihalak, and J. Frece. 2013. Natural occurrence of aflatoxin B1, ochratoxin A and citrinin in croatian fermented meat products. Food Control. 34 (2):312–7. doi:10.1016/j.foodcont.2013.05.002.
  • Muratsugu, S., and M. Tada. 2013. Molecularly imprinted Ru complex catalysts integrated on oxide surfaces. Accounts of Chemical Research 46 (2):300–11. doi:10.1021/ar300142p.
  • Singh, G., L. Velasquez, A. C. Huet, P. Delahaut, N. Gillard, and T. Koerner. 2019. Development of a sensitive polyclonal antibody-based competitive indirect ELISA for determination of citrinin in grain-based foods. Food Additives & Contaminants. Part A, Chemistry, Analysis, Control, Exposure & Risk Assessment 36 (10):1567–73. doi:10.1080/19440049.2019.1640895.
  • Taghizadeh, S. F., R. Rezaee, H. Badiebostan, J. P. Giesy, and G. Karimi. 2020. Occurrence of mycotoxins in rice consumed by Iranians: A probabilistic assessment of risk to health. Food Additives & Contaminants. Part A, Chemistry, Analysis, Control, Exposure & Risk Assessment 37 (2):342–54. doi:10.1080/19440049.2019.1684572.
  • Turan, E., and F. Şahin. 2016. Molecularly imprinted biocompatible magnetic nanoparticles for specific recognition of Ochratoxin A. Sensors and Actuators B: Chemical 227:668–76. doi:10.1016/j.snb.2015.12.087.
  • Turiel, E., and A. Martin-Esteban. 2019. Molecularly imprinted polymers-based microextraction techniques. Trac Trends in Analytical Chemistry 118:574–86. doi:10.1016/j.trac.2019.06.016.
  • Urraca, J. L., J. F. Huertas-Pérez, G. A. Cazorla, J. Gracia-Mora, A. M. García-Campaña, and M. C. Moreno-Bondi. 2016. Development of magnetic molecularly imprinted polymers for selective extraction: Determination of citrinin in rice samples by liquid chromatography with UV diode array detection. Analytical and Bioanalytical Chemistry 408 (11):3033–42. doi:10.1007/s00216-016-9348-8.
  • Xiao, Y., R. Xiao, J. Tang, Q. Zhu, X. Li, Y. Xiong, and X. Wu. 2017. Preparation and adsorption properties of molecularly imprinted polymer via RAFT precipitation polymerization for selective removal of aristolochic acid I. Talanta 162:415–22. doi:10.1016/j.talanta.2016.10.014.
  • Xue, K. S., L. L. Tang, G. J. Sun, S. K. Wang, X. Hu, and J. S. Wang. 2019. Mycotoxin exposure is associated with increased risk of esophageal squamous cell carcinoma in Huaian area. Bmc Cancer 19 (1):1218. doi:10.1186/s12885-019-6439-x.
  • Yang, L., Z. Fan, T. Wang, W. Cai, M. Yang, P. Jiang, M. Zhang, and X. Dong. 2011. Preparation of a pyrazosulfuron-ethyl imprinted polymer with hydrophilic external layers by reversible addition-fragmentation chain transfer precipitation and grafting polymerization. Analytical Letters 44 (16):2617–32. doi:10.1080/00032719.2011.553007.
  • Yang, J., Y. Li, J. Wang, X. Sun, R. Cao, H. Sun, C. Huang, and J. Chen. 2015. Molecularly imprinted polymer microspheres prepared by Pickering emulsion polymerization for selective solid-phase extraction of eight bisphenols from human urine samples. Analytica Chimica Acta 872:35–45. doi:10.1016/j.aca.2015.02.058.
  • Zengin, A., M. U. Badak, and N. Aktas. 2018. Selective separation and determination of quercetin from red wine by molecularly imprinted nanoparticles coupled with HPLC and ultraviolet detection. Journal of Separation Science 41 (17):3459–66. doi:10.1002/jssc.201800437.
  • Zengin, A., M. U. Badak, M. Bilici, Z. Suludere, and N. Aktas. 2019. Preparation of molecularly imprinted PDMS elastomer for selective detection of folic acid in orange juice. Applied Surface Science 471:168–75. doi:10.1016/j.apsusc.2018.12.008.
  • Zengin, A., and T. Caykara. 2012. RAFT-mediated synthesis of poly[(oligoethylene glycol) methyl ether acrylate] brushes for biological functions. Journal of Polymer Science Part A: Polymer Chemistry 50 (21):4443–50. doi:10.1002/pola.26250.
  • Zengin, A., U. Tamer, and T. Caykara. 2013. A SERS-based sandwich assay for ultrasensitive and selective detection of Alzheimer's tau protein. Biomacromolecules 14 (9):3001–9. doi:10.1021/bm400968x.
  • Zengin, A., E. Yildirim, and T. Caykara. 2013. RAFT-mediated synthesis and temperature-induced responsive properties of poly(2-(2-methoxyethoxy)ethyl methacrylate) brushes. Journal of Polymer Science Part A: Polymer Chemistry 51 (4):954–62. doi:10.1002/pola.26460.
  • Zhang, H. Q. 2020. Molecularly imprinted nanoparticles for biomedical applications. Advanced Materials 32 (3):1806328. 23 (1-23). doi:10.1002/adma.20.
  • Zhou, B., Y. Ma, Y. Tian, J. Li, and H. Zhong. 2020. Quantitative proteomics analysis by sequential window acquisition of all theoretical mass spectra-mass spectrometry reveals inhibition mechanism of pigments and citrinin production of monascus response to high ammonium chloride concentration. Journal of Agricultural and Food Chemistry 68 (3):808–17. doi:10.1021/acs.jafc.9b05852.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.