198
Views
5
CrossRef citations to date
0
Altmetric
Atomic Spectroscopy

Determination of Arsenic in Soil by Ultrasonic Assisted Slurry Sampling Hydride Generation (HG) in-Situ Dielectric Barrier Discharge Trap (DBD)-Optical Emission Spectrometry (OES)

, , , , ORCID Icon &
Pages 1349-1363 | Received 14 Sep 2021, Accepted 05 Nov 2021, Published online: 09 Dec 2021

Reference

  • Al-Assaf, K. H., J. F. Tyson, and P. C. Uden. 2009. Determination of four arsenic species in soil by sequential extraction and high performance liquid chromatography with post-column hydride generation and inductively coupled plasma optical emission spectrometry detection. Journal of Analytical Atomic Spectrometry 24 (4):376–84. doi:10.1039/b820300h.
  • Amin, M. N., S. Kaneco, Y. Nakano, H. Katsumata, T. Suzuki, and K. Ohta. 2008. Preconcentration technique for manganese by adsorption onto a tantalum wire for tungsten tube atomizer electrothermal atomization atomic absorption spectrometry. Microchimica Acta 162 (1-2):73–9. doi:10.1007/s00604-007-0860-6.
  • Binstock, D. A. 2000. A microwave digestion method for total decomposition of lead and ether metals in paint, soil and dust. Analytical Letters 33 (15):3397–406. doi:10.1080/00032719.2000.10399508.
  • Demirtaş, İ., S. Bakırdere, and O. Y. Ataman. 2015. Lead determination at ng/mL level by flame atomic absorption spectrometry using a tantalum coated slotted quartz tube atom trap. Talanta 138:218–24. doi:10.1016/j.talanta.2015.02.044.
  • Doroski, T. A., A. M. King, M. P. Fritz, and M. R. Webb. 2013. Solution–cathode glow discharge – optical emission spectrometry of a new design and using a compact spectrograph. Journal of Analytical Atomic Spectrometry 28 (7):1090–5. doi:10.1039/c3ja50092f.
  • dos Santos, E. J., A. B. Herrmann, F. Vieira, C. S. Sato, Q. B. Correa, T. A. Maranhao, L. Tormen, and A. J. Curtius. 2010. Determination of Hg and Pb in compact fluorescent lamp by slurry sampling inductively coupled plasma optical emission spectrometry. Microchemical Journal 96 (1):27–31. doi:10.1016/j.microc.2010.01.012.
  • Feng, Y. H., G. Q. Wang, R. R. Ying, X. Zhao, L. P. Zheng, Y. Zhou, X. Zhu, and Y. S. Lin. 2014. Pretreatment and determination methods of total mercury in environmental soil samples. Environmental Science & Technology (China) 37:87–91–98.
  • Greda, K., P. Jamroz, D. Jedryczko, and P. Pohl. 2015. On the coupling of hydride generation with atmospheric pressure glow discharge in contact with the flowing liquid cathode for the determination of arsenic, antimony and selenium with optical emission spectrometry. Talanta 137:11–7.
  • Guerin, T., N. Molenat, A. Astruc, and R. Pinel. 2000. Arsenic speciation in some environmental samples: A comparative study of HG-GC-QFAAS and HPLC-ICP-MS methods. Applied Organometallic Chemistry 14 (8):401–10. doi:10.1002/1099-0739(200008)14:8<401::AID-AOC21>3.0.CO;2-Y.
  • Han, B. J., X. M. Jiang, X. D. Hou, and C. B. Zheng. 2014. Miniaturized dielectric barrier discharge carbon atomic emission spectrometry with online microwave-assisted oxidation for determination of total organic carbon. Analytical Chemistry 86 (13):6214–9. doi:10.1021/ac501272m.
  • Han, B. J., Y. Li, Y. He, D. Z. Lv, L. X. Peng, and H. M. Yu. 2018. Miniaturized dielectric barrier discharge–atomic emission spectrometer for pesticide: Sensitive determination of thiram after derivatization with mercurial ion. Microchemical Journal 138:457–64. doi:10.1016/j.microc.2018.01.026.
  • He, H. Y., Z. L. Zhu, H. T. Zheng, Q. Xiao, L. L. Jin, and S. H. Hu. 2012. Dielectric barrier discharge micro-plasma emission source for the determination of thimerosal in vaccines by photochemical vapor generation. Microchemical Journal 104:7–11. doi:10.1016/j.microc.2012.03.022.
  • Husakova, L., I. Urbanova, M. Safrankova, and T. Sidova. 2017. Slurry sampling high-resolution continuum source electrothermal atomic absorption spectrometry for direct beryllium determination in soil and sediment samples after elimination of SiO interference by least-squares background correction. Talanta 175:93–100.
  • Kargosha, K., and A. Valadkhani. 2017. Preconcentration and Direct Determination of As and Bi in Aqueous and Solid Samples Using Hydride Generation Atomic Fluorescence Spectrometry. Atomic Spectroscopy 38 (6):194–9. doi:10.46770/AS.2017.06.004.
  • Li, M. T., Y. J. Deng, C. B. Zheng, X. M. Jiang, and X. D. Hou. 2016. Hydride generation-point discharge microplasma-optical emission spectrometry for the determination of trace As, Bi, Sb and Sn. Journal of Analytical Atomic Spectrometry 31 (12):2427–33. doi:10.1039/C6JA00341A.
  • Li, M. T., K. Li, L. He, X. L. Zeng, X. Wu, X. D. Hou, and X. M. Jiang. 2019. Point discharge microplasma optical emission spectrometer: hollow electrode for efficient volatile hydride/mercury sample introduction and 3D-printing for compact instrumentation. Analytical Chemistry 91 (11):7001–6. doi:10.1021/acs.analchem.9b00045.
  • Lin, Y., Y. Yang, Y. X. Li, L. Yang, X. D. Hou, X. B. Feng, and C. B. Zheng. 2016. Ultrasensitive speciation analysis of mercury in rice by headspace solid phase microextraction using porous carbons and gas chromatography-dielectric barrier discharge optical emission spectrometry. Environmental Science & Technology 50 (5):2468–76. doi:10.1021/acs.est.5b04328.
  • Liu, M. T., J. X. Liu, X. F. Mao, X. Na, G. Y. Chen, L. Ding, and Y. Z. Qian. 2020. In situ preconcentration of lead by dielectric barrier discharge and its application to high sensitivity surface water analysis. Talanta 219:121182. doi:10.1016/j.talanta.2020.121182.
  • Li, N., Z. C. Wu, Y. Y. Wang, J. Zhang, X. N. Zhang, H. N. Zhang, W. H. Wu, J. Gao, and J. Jiang. 2017. Portable dielectric barrier discharge-atomic emission spectrometer. Analytical Chemistry 89 (4):2205–10. doi:10.1021/acs.analchem.6b03523.
  • Mao, X. F., Y. H. Qi, J. W. Huang, J. X. Liu, G. Y. Chen, X. Na, M. Wang, and Y. Z. Qian. 2016. Ambient-temperature trap/release of arsenic by dielectric barrier discharge and its application to ultratrace arsenic determination in surface water followed by atomic fluorescence spectrometry. Analytical Chemistry 88 (7):4147–52. doi:10.1021/acs.analchem.6b00506.
  • Matusiewicz, H., and M. Kopras. 2003. Simultaneous determination of hydride forming elements (As, Bi, Ge, Sb, Se) and Hg in biological and environmental reference materials by electrothermal vaporization-microwave induced plasma-optical emission spectrometry with their in situ trapping in a graphite furnace. Journal of Analytical Atomic Spectrometry 18:1415–25.
  • Niedzielski, P., M. Siepak, and J. Siepak. 2002. Comparison of modifiers for determination of arsenic, antimony and selenium by atomic absorption spectrometry with atomization in graphite tube or hydride generation and in-situ preconcentration in graphite tube. Microchemical Journal. 72 (2):137–45. doi:10.1016/S0026-265X(01)00161-8.
  • Novák, P., J. Dědina, and J. Kratzer. 2016. Preconcentration and atomization of arsane in a dielectric barrier discharge with detection by atomic absorption spectrometry. Analytical Chemistry 88 (11):6064–70. doi:10.1021/acs.analchem.6b01365.
  • Peng, X. X., X. H. Guo, F. Ge, and Z. Wang. 2019. Battery-operated portable high-throughput solution cathode glow discharge optical emission spectrometry for environmental metal detection. Journal of Analytical Atomic Spectrometry 34 (2):394–400. doi:10.1039/C8JA00369F.
  • Qi, Y. H., X. F. Mao, J. X. Liu, X. Na, G. Y. Chen, M. T. Liu, C. M. Zheng, and Y. Z. Qian. 2018. In Situ dielectric barrier discharge trap for ultrasensitive arsenic determination by atomic fluorescence spectrometry . Analytical Chemistry 90 (10):6332–8. doi:10.1021/acs.analchem.8b01199.
  • Schneider, M., H. R. Cadorim, B. Welz, E. Carasek, and J. Feldmann. 2018. Determination of arsenic in agricultural soil samples using high-resolution continuum source graphite furnace atomic absorption spectrometry and direct solid sample analysis. Talanta 188:722–8. doi:10.1016/j.talanta.2018.06.052.
  • Yang, C., G. C. Y. Chan, D. He, Z. F. Liu, Q. S. Deng, H. T. Zheng, S. H. Hu, and Z. L. Zhu. 2019. Highly sensitive determination of arsenic and antimony based on an interrupted gas flow atmospheric pressure glow discharge excitation source. Analytical Chemistry 91 (3):1912–9. doi:10.1021/acs.analchem.8b03944.
  • Yang, H. C., and B. P. Rosen. 2016. New mechanisms of bacterial arsenic resistance. Biomedical Journal 39 (1):5–13. doi:10.1016/j.bj.2015.08.003.
  • Zhang, Y. R., J. Ma, X. Na, Y. B. Shao, J. X. Liu, X. F. Mao, G. Y. Chen, D. Tian, and Y. Z. Qian. 2020. A portable and field optical emission spectrometry coupled with microplasma trap for high sensitivity analysis of arsenic and antimony simultaneously. Talanta 218:121161. doi:10.1016/j.talanta.2020.121161.
  • Zhang, Y. R., X. F. Mao, D. Tian, J. X. Liu, and C. S. Li. 2021. Trace arsenic analysis in edible seaweeds by miniature in situ dielectric barrier discharge microplasma optical emission spectrometry based on gas phase enrichment. Analytical Methods 13 (36):4079–89. doi:10.1039/D1AY01034D.
  • Zhang, Y. F., C. B. Zheng, X. D. Hou, and K. L. Xu. 2013. Online multichannel ultrasonic extraction for high throughput determination of arsenic in soil by sequential injection slurry hydride generation atomic fluorescence spectrometry. Analytical Methods 5 (12):3142–7. doi:10.1039/c3ay40584b.
  • Zhu, Z. L., H. Y. He, D. He, H. T. Zheng, C. X. Zhang, and S. H. Hu. 2014. Evaluation of a new dielectric barrier discharge excitation source for the determination of arsenic with atomic emission spectrometry. Talanta 122:234–9. doi:10.1016/j.talanta.2014.01.054.
  • Zurynková, P., J. Dědina, and J. Kratzer. 2018. Trace determination of antimony by hydride generation atomic absorption spectrometry with analyte preconcentration/atomization in a dielectric barrier discharge atomizer. Analytica Chimica Acta 1010:11–9. doi:10.1016/j.aca.2018.01.033.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.