129
Views
2
CrossRef citations to date
0
Altmetric
Geochemical Analysis

Greenhouse Characterization of Inorganic Mercury, Methyl Mercury and Ethyl Mercury Migration and Transformation in Indian Mustard and Chinese Pakchoi

, , , , & ORCID Icon
Pages 1425-1439 | Received 16 Jun 2021, Accepted 13 Nov 2021, Published online: 08 Dec 2021

References

  • Agneta, G., and M. Greger. 2006. Formation of methyl mercury in an aquatic macrophyte. Chemosphere 65 (11):2096–105. doi:10.1016/j.chemosphere.2006.06.045.
  • Bibi, A., U. Farooq, S. Naz, A. Khan, S. Khan, R. Sarwar, Q. Mahmood, A. Alam, and N. Mirza. 2016. Phytoextraction of Hg by parsley (Petroselinum crispum) and its growth responses. International Journal of Phytoremediation 18 (4):354–7. doi:10.1080/15226514.2015.1109590.
  • Carvalho, G. S., J. R. Oliveira, N. Curi, D. G. Schulze, and J. J. Marques. 2019. Selenium and mercury in Brazilian Cerrado soils and their relationships with physical and chemical soil characteristics. Chemosphere 218:412–5. doi:10.1016/j.chemosphere.2018.11.099.
  • Chen, C., Y. Qian, X. Liu, C. Tao, Y. Liang, and Y. Li. 2012. Risk assessment of chlorpyrifos on rice and cabbage in China. Regulatory Toxicology and Pharmacology: RTP 62 (1):125–30. doi:10.1016/j.yrtph.2011.12.011.
  • Ding, C., T. Zhang, X. Li, and X. Wang. 2014. Major controlling factors and prediction models for mercury transfer from soil to carrot. Journal of Soils and Sediments 14 (6):1136–46. doi:10.1007/s11368-014-0854-z.
  • Dunagan, S., M. Gilmore, and J. Varekamp. 2007. Effects of mercury on visible/near-infrared reflectance spectra of mustard spinach plants (Brassica rapa P.). Environmental Pollution (Barking, Essex: 1987) 148 (1):301–11. doi:10.1016/j.envpol.2006.10.023.
  • Galloway, M. E., and B. A. Branfireun. 2004. Mercury dynamics of a temperate forested wetland. The Science of the Total Environment 325 (1–3):239–54. doi:10.1016/j.scitotenv.2003.11.010.
  • Gerhardt, K. E., P. D. Gerwing, and B. M. Greenberg. 2017. Opinion: Taking phytoremediation from proven technology to accepted practice. Plant Science: An International Journal of Experimental Plant Biology 256:170–85. doi:10.1016/j.plantsci.2016.11.016.
  • González, A. I., I. Giráldez, F. Martínez, P. Palencia, W. T. Corns, and D. Sánchez. 2020. Arsenic accumulation and speciation in strawberry plants exposed to inorganic arsenic enriched irrigation. Food Chemistry 315:126215. doi:10.1016/j.foodchem.2020.126215.
  • Greger, M., Y. Wang, and C. Neuschütz. 2005. Absence of Hg transpiration by shoot after Hg uptake by roots of six terrestrial plant species. Environmental Pollution 134 (2):201–8. doi:10.1016/j.envpol.2004.08.007.
  • Harris-Hellal, J., T. Vallaeys, E. Garnier-Zarli, and N. Bousserrhine. 2009. Effects of mercury on soil microbial communities in tropical soils of French Guyana. Applied Soil Ecology 41 (1):59–68. doi:10.1016/j.apsoil.2008.08.009.
  • Harrison, R. M., and M. B. Chirgawi. 1989. The assessment of air and soil as contributors of some trace metals to vegetable plants III. Experiments with field-grown plants. Science of the Total Environment 83 (1–2):47–62. doi:10.1016/0048-9697(89)90005-3.
  • Khanam, R., A. Kumar, A. K. Nayak, M. Shahid, R. Tripathi, S. Vijayakumar, D. Bhaduri, U. Kumar, S. Mohanty, P. Panneerselvam, et al. 2020. Metal(loid)s (As, Hg, Se, Pb and Cd) in paddy soil: Bioavailability and potential risk to human health. The Science of the Total Environment 699:134330. doi:10.1016/j.scitotenv.2019.134330.
  • Li, X., X. Lan, W. Liu, X. Cui, and Z. Cui. 2020. Toxicity, migration and transformation characteristics of lead in soil-plant system: Effect of lead species. Journal of Hazardous Materials 395:122676. doi:10.1016/j.jhazmat.2020.122676.
  • Liu, H., A. Probst, and B. Liao. 2005. Metal contamination of soils and crops affected by the Chenzhou lead/zinc mine spill (Hunan, China). Science of the Total Environment 339 (1–3):153–66. doi:10.1016/j.scitotenv.2004.07.030.
  • Liu, C., C. Wu, M. Rafiq, R. Aziz, D. Hou, Z. Ding, Z. Lin, L. Lou, Y. Feng, T. Li, et al. 2013. Accumulation of mercury in rice grain and cabbage grown on representative Chinese soils. Journal of Zhejiang University. Science B 14 (12):1144–51. doi:10.1631/jzus.B1300004.
  • Li, F., J. Yuan, and G. Sheng. 2012. Altered transfer of heavy metals from soil to Chinese cabbage with film mulching. Ecotoxicology and Environmental Safety 77:1–6. doi:10.1016/j.ecoenv.2011.10.019.
  • Lomonte, C., A. I. Doronila, D. Gregory, A. Baker, and S. D. Kolev. 2010. Phytotoxicity of biosolids and screening of selected plant species with potential for mercury phytoextraction. Journal of Hazardous Materials 173 (1–3):494–501. doi:10.1016/j.jhazmat.2009.08.112.
  • Meersmans, J., B. Van Wesemael, and M. Van Molle. 2009. Determining soil organic carbon for agricultural soils: A comparison between the Walkley & Black and the dry combustion methods (North Belgium). Soil Use and Management 25 (4):346–53. doi:10.1111/j.1475-2743.2009.00242.x.
  • Natasha, M., Shahid, S. Khalid, I. Bibi, J. Bundschuh, N. Khan Niazi, and C. Dumat. 2020. A critical review of mercury speciation, bioavailability, toxicity and detoxification in soil-plant environment: Ecotoxicology and health risk assessment. Science of the Total Environment 711:134749. doi:10.1016/j.scitotenv.2019.134749.
  • O’Connor, D., T. Peng, G. Li, S. Wang, L. Duan, J. Mulder, G. Cornelissen, Z. Cheng, S. Yang, and D. Hou. 2018. Sulfur-modified rice husk biochar: A green method for the remediation of mercury contaminated soil. The Science of the Total Environment 621:819–26. doi:10.1016/j.scitotenv.2017.11.213.
  • Onduru, D. D., and C. C. Du Preez. 2007. Spatial and temporal aspects of agricultural sustainability in the semi-arid tropics: A case study in Mbeere district, Eastern Kenya. Tropical Science 47 (3):134–48. doi:10.1002/ts.207.
  • Parks, J. M., A. Johs, M. Podar, R. Bridou, R. A. Hurt, Jr, S. D. Smith, S. J. Tomanicek, Y. Qian, S. D. Brown, C. C. Brandt, et al. 2013. The genetic basis for bacterial mercury methylation. Science (New York, N.Y.) 339 (6125):1332–5. doi:10.1126/science.1230667.
  • Qian, X., Y. Wu, H. Zhou, X. Xu, Z. Xu, L. Shang, and G. Qiu. 2018. Total mercury and methylmercury accumulation in wild plants grown at wastelands composed of mine tailings: Insights into potential candidates for phytoremediation. Environmental Pollution (Barking, Essex: 1987) 239:757–67. doi:10.1016/j.envpol.2018.04.105.
  • Qiu, G., X. Feng, P. Li, S. Wang, G. Li, L. Shang, and X. Fu. 2008. Methylmercury accumulation in rice (Oryza sativa L.) grown at abandoned mercury mines in Guizhou, China. Journal of Agricultural and Food Chemistry 56 (7):2465–8. doi:10.1021/jf073391a.
  • Raj, D., A. Kumar, and S. K. Maiti. 2020. Brassica juncea (L.) Czern. (Indian mustard): A putative plant species to facilitate the phytoremediation of mercury contaminated soils. International Journal of Phytoremediation 22 (7):733–44. doi:10.1080/15226514.2019.1708861.
  • Rodríguez, E., J. R. Peralta-Videa, M. Israr, S. V. Sahi, H. Pelayo, B. Sánchez-Salcido, and J. L. Gardea-Torresdey. 2009. Effect of mercury and gold on growth, nutrient uptake, and anatomical changes in Chilopsis linearis. Environmental and Experimental Botany 65 (2–3):253–62. doi:10.1016/j.envexpbot.2008.09.014.
  • Song, Z., G. Chen, C. Wei, X. Fan, and X. Liu. 2015. Determination of merthyl mercury and ethyl mercury in field soil by HPLC–ICP–MS. Chemical Analysis and Meterage 24:33–6. doi:10.3969/j.issn.1008-6145.2015.01.008.
  • Sun, Y., Q. Zhou, L. Wang, and W. Liu. 2009. Cadmium tolerance and accumulation characteristics of Bidens pilosa L. as a potential Cd-hyperaccumulator. Journal of Hazardous Materials 161 (2–3):808–14. doi:10.1016/j.jhazmat.2008.04.030.
  • Thakur, A. K., N. Parmar, K. H. Singh, and J. Nanjundan. 2020. Current achievements and future prospects of genetic engineering in Indian mustard (Brassica juncea L. Czern & Coss.). Planta 252 (4):56. doi:10.1007/s00425-020-03461-8.
  • Turull, M., C. Fontàs, and S. Díez. 2019. Conventional and novel techniques for the determination of Hg uptake by lettuce in amended agricultural peri-urban soils. Science of the Total Environment 668:40–6. doi:10.1016/j.scitotenv.2019.02.244.
  • Xu, X., J. Zhao, Y. Li, Y. Fan, N. Zhu, Y. Gao, B. Li, H. Liu, and Y. Li. 2016. Demethylation of methylmercury in growing rice plants: An evidence of self-detoxification. Environmental Pollution (Barking, Essex: 1987) 210:113–20. doi:10.1016/j.envpol.2015.12.013.
  • Yadav, S. K. 2010. Heavy metals toxicity in plants: An overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. South African Journal of Botany 76 (2):167–79. doi:10.1016/j.sajb.2009.10.007.
  • Yang, B., Y. Gao, C. Zhang, J. Han, Y. Liu, and X. Zheng. 2020. Potato (Solanum tuberosum L.) can be grown safety on human consumption in slight Hg-contaminated soils across China mainland. Scientific Reports 10 (1):1–7. doi:10.1038/s41598-020-65430-1.
  • Yang, B., Y. Gao, C. Zhang, X. Zheng, and B. Li. 2020. Mercury accumulation and transformation of main leaf vegetable crops in Cambosol and Ferrosol soil in China. Environmental Science and Pollution Research 27 (1):391–8. doi:10.1007/s11356-019-06798-0.
  • You, M., Y. Huang, J. Lu, and C. Li. 2015. Characterization of heavy metals in soil near coal mines and a power plant in Huainan, China. Analytical Letters 48 (4):726–37. doi:10.1080/00032719.2014.940531.
  • Yu, H., J. Li, and Y. Luan. 2018. Meta-analysis of soil mercury accumulation by vegetables. Scientific Reports 8 (1):1261. doi:10.1038/s41598-018-19519-3.
  • Zacchini, M., F. Pietrini, G. Scarascia Mugnozza, V. Iori, L. Pietrosanti, and A. Massacci. 2009. Metal tolerance, accumulation and translocation in poplar and willow clones treated with cadmium in hydroponics. Water, Air, and Soil Pollution 197 (1–4):23–34. doi:10.1007/s11270-008-9788-7.
  • Zhang, S., M. Chen, T. Li, X. Xu, and L. Deng. 2010. A newly found cadmium accumulator-Malva sinensis Cavan. Journal of Hazardous Materials 173 (1–3):705–9. doi:10.1016/j.jhazmat.2009.08.142.
  • Zhang, H., X. Feng, T. Larssen, G. Qiu, and D. Vogt Rolf. 2010. In Inland China, rice, rather than fish, is the major pathway for methylmercury exposure. Environmental Health Perspectives 118 (9):1183–8. doi:10.1289/ehp.1001915.
  • Zhao, Y., H. Li, B. Li, Y. Lai, L. Zang, and X. Tang. 2021. Process design and validation of a new mixed eluent for leaching Cd, Cr, Pb, Cu, Ni, and Zn from heavy metal-polluted soil. Analytical Methods: Advancing Methods and Applications 13 (10):1269–77. doi:10.1039/D0AY01978J.
  • Zhao, Y., Z. Zhang, B. Li, Y. Zhao, J. Lu, and X. Tang. 2021. Accurate determination and comprehensive evaluation of heavy metals in different soils from Jilin Province in Northeast China. Analytical Letters 54 (12):1901–28. doi:10.1080/00032719.2020.1828908.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.