262
Views
3
CrossRef citations to date
0
Altmetric
Biosensors

Electrochemical Immune-Determination of Alkaline Phosphatase Based on Gold Nanoparticle/Ti3C2Tx MXenes as the Sensing Platform by Differential Pulse Voltammetry (DPV)

, , , &
Pages 1440-1452 | Received 07 Sep 2021, Accepted 15 Nov 2021, Published online: 08 Dec 2021

References

  • Balbaied, T., and E. Moore. 2019. Overview of optical and electrochemical alkaline phosphatase (ALP) biosensors: Recent approaches in cells culture techniques. Biosensors 9 (3):102. doi:10.3390/bios9030102.
  • Cai, Y., J. Shen, G. Ge, Y. Zhang, W. Jin, W. Huang, J. Shao, J. Yang, and X. Dong. 2018. Stretchable Ti3C2Tx MXene/carbon nanotube composite based strain sensor with ultrahigh sensitivity and tunable sensing range. ACS Nano 12 (1):56–62. doi:10.1021/acsnano.7b06251.
  • Chen, Z., S. Liu, X. Yu, L. Hao, L. Wang, and S. Liu. 2019. Responsive methylene blue release from lanthanide coordination polymer for label-free, immobilization-free and sensitive electrochemical alkaline phosphatase activity assay. The Analyst 144 (20):5971–9. doi:10.1039/c9an01325c.
  • Elumalai, S., V. Mani, N. Jeromiyas, V. K. Ponnusamy, and M. Yoshimura. 2020. A composite film prepared from titanium carbide Ti3C2Tx (MXene) and gold nanoparticles for voltammetric determination of uric acid and folic acid. Microchimica Acta 187 (1):1–10. doi:10.1007/s00604-019-4018-0.
  • Goggins, S., C. Naz, B. J. Marsh, and C. G. Frost. 2015. Ratiometric electrochemical detection of alkaline phosphatase. Chemical Communications (Cambridge, England) 51 (3):561–4. doi:10.1039/c4cc07693a.
  • Hung, H. Y., J. S. Chen, Y. Chien, R. Tang, P. S. Hsieh, S. Wen, Y. T. You, J. F. You, and J. M. Chiang. 2017. Preoperative alkaline phosphatase elevation was associated with poor survival in colorectal cancer patients. International Journal of Colorectal Disease 32 (12):1775–8. doi:10.1007/s00384-017-2907-4.
  • Ito, S., S.-I. Yamazaki, K. Kano, and T. Ikeda. 2000. Highly sensitive electrochemical detection of alkaline phosphatase. Analytica Chimica Acta 424 (1):57–63. doi:10.1016/S0003-2670(00)01149-1.
  • Kalambate, P. K., N. S. Gadhari, X. Li, Z. Rao, S. T. Navale, Y. Shen, V. R. Patil, and Y. Huang. 2019. Recent advances in MXene-based electrochemical sensors and biosensors. TrAC Trends in Analytical Chemistry 120:115643. doi:10.1016/j.trac.2019.115643.
  • Kim, H.-J., and J. Kwak. 2005. Electrochemical determination of total alkaline phosphatase in human blood with a micropatterned ITO film. Journal of Electroanalytical Chemistry 577 (2):243–8. doi:10.1016/j.jelechem.2004.11.035.
  • Li, K., T. Jiao, R. Xing, G. Zou, J. Zhou, L. Zhang, and Q. Peng. 2018. Fabrication of tunable hierarchical MXene@AuNPs nanocomposites constructed by self-reduction reactions with enhanced catalytic performances. Science China Materials 61 (5):728–36. doi:10.1007/s40843-017-9196-8.
  • Liu, Y., E. Xiong, X. Li, J. Li, X. Zhang, and J. Chen. 2017. Sensitive electrochemical assay of alkaline phosphatase activity based on TdT-mediated hemin/G-quadruplex DNAzyme nanowires for signal amplification. Biosensors & Bioelectronics 87:970–5. doi:10.1016/j.bios.2016.09.069.
  • Li, Y., R. Wang, and A. Fan. 2020. Gold nanoclusters-catalyzed luminol chemiluminescent sensing method for sensitive and selective detection of alkaline phosphatase. Analytical Sciences 36 (9):1075–9. doi:10.2116/analsci.20P098.
  • Lv, H., and X. Chen. 2021. New insights into the mechanism of fluid mixing in the micromixer based on alternating current electric heating with film heaters. International Journal of Heat and Mass Transfer 181:121902. doi:10.1016/j.ijheatmasstransfer.2021.121902.
  • Lv, H., X. Chen, and X. Zeng. 2021. Optimization of micromixer with Cantor fractal baffle based on simulated annealing algorithm. Chaos, Solitons & Fractals 148 (111048):111048. doi:10.1016/j.chaos.2021.111048.
  • Mahato, K., B. Purohit, A. Kumar, and P. Chandra. 2020. Clinically comparable impedimetric immunosensor for serum alkaline phosphatase detection based on electrochemically engineered Au-nano-dendroids and graphene oxide nanocomposite. Biosensors & Bioelectronics 148:111815. doi:10.1016/j.bios.2019.111815.
  • Miao, P., L. Ning, X. Li, Y. Shu, and G. Li. 2011. An electrochemical alkaline phosphatase biosensor fabricated with two DNA probes coupled with λ exonuclease. Biosensors & Bioelectronics 27 (1):178–82. doi:10.1016/j.bios.2011.06.047.
  • Mintz, H. N., A. Convertino, and Y. Shacham-Diamand. 2018. Alkaline phosphatase detection using electrochemical impedance of anti-alkaline phosphatase antibody (Ab354) functionalized silicon-nanowire-forest in phosphate buffer solution. Sensors and Actuators B: Chemical 259:809–15. doi:10.1016/j.snb.2017.12.136.
  • Mohammadniaei, M., A. Koyappayil, Y. Sun, J. Min, and M.-H. Lee. 2020. Gold nanoparticle/MXene for multiple and sensitive detection of oncomiRs based on synergetic signal amplification. Biosensors & Bioelectronics 159:112208. doi:10.1016/j.bios.2020.112208.
  • Nsabimana, A., Y. Lan, F. Du, C. Wang, W. Zhang, and G. Xu. 2019. Alkaline phosphatase-based electrochemical sensors for health applications. Analytical Methods 11 (15):1996–2006. doi:10.1039/C8AY02793E.
  • Pang, S. Y., Y. T. Wong, S. Yuan, Y. Liu, M. K. Tsang, Z. Yang, H. Huang, W. T. Wong, and J. Hao. 2019. Universal strategy for HF-free facile and rapid synthesis of two-dimensional MXenes as multifunctional energy materials. Journal of the American Chemical Society 141 (24):9610–6. doi:10.1021/jacs.9b02578.
  • Sappia, L., B. Felice, M. A. Sanchez, M. Martí, R. Madrid, and M. I. Pividori. 2019. Electrochemical sensor for alkaline phosphatase as biomarker for clinical and in vitro applications. Sensors and Actuators B: Chemical 281:221–8. doi:10.1016/j.snb.2018.10.105.
  • Sharifuzzaman, M., S. C. Barman, M. A. Zahed, S. Sharma, H. Yoon, J. S. Nah, H. Kim, and J. Y. Park. 2020. An electrodeposited MXene-Ti3C2Tx nanosheets functionalized by task-specific ionic liquid for simultaneous and multiplexed detection of bladder cancer biomarkers. Small 16 (46):2002517. doi:10.1002/smll.202002517.
  • Simão, E. P., I. A. Frías, C. A. Andrade, and M. D. Oliveira. 2018. Nanostructured electrochemical immunosensor for detection of serological alkaline phosphatase. Colloids and Surfaces B, Biointerfaces 171:413–8. doi:10.1016/j.colsurfb.2018.07.056.
  • Sinha, A., Dhanjai, H. Zhao, Y. Huang, X. Lu, J. Chen, and R. Jain. 2018. MXene: An emerging material for sensing and biosensing. TrAC Trends in Analytical Chemistry 105:424–35. doi:10.1016/j.trac.2018.05.021.
  • Tu, X., F. Gao, X. Ma, J. Zou, Y. Yu, M. Li, F. Qu, X. Huang, and L. Lu. 2020. Mxene/carbon nanohorn/β-cyclodextrin-metal-organic frameworks as high-performance electrochemical sensing platform for sensitive detection of carbendazim pesticide. Journal of Hazardous Materials 396:122776. doi:10.1016/j.jhazmat.2020.122776.
  • Wang, W., J. Lu, L. Hao, H. Yang, X. Song, and F. Si. 2021. Electrochemical detection of alkaline phosphatase activity through enzyme-catalyzed reaction using aminoferrocene as an electroactive probe. Analytical and Bioanalytical Chemistry 413 (7):1827–36. doi:10.1007/s00216-020-03150-1.
  • Wang, J. H., K. Wang, B. Bartling, and C.-C. Liu. 2009. The detection of alkaline phosphatase using an electrochemical biosensor in a single-step approach. Sensors (Basel, Switzerland) 9 (11):8709–21. doi:10.3390/s91108709.
  • Wu, H., M. Almalki, X. Xu, Y. Lei, F. Ming, A. Mallick, V. Roddatis, S. Lopatin, O. Shekhah, M. Eddaoudi, et al. 2019. MXene derived metal-organic frameworks. Journal of the American Chemical Society 141 (51):20037–42. doi:10.1021/jacs.9b11446.
  • Wu, Z., C.-H. Zhou, L.-J. Pan, T. Zeng, L. Zhu, D.-W. Pang, and Z.-L. Zhang. 2016. Reliable digital single molecule electrochemistry for ultrasensitive alkaline phosphatase detection. Analytical Chemistry 88 (18):9166–72. doi:10.1021/acs.analchem.6b02284.
  • Xia, Y., Y. Ma, Y. Wu, Y. Yi, H. Lin, and G. Zhu. 2021. Free-electrodeposited anodic stripping voltammetry sensing of Cu(II) based on Ti3C2Tx MXene/carbon black. Mikrochimica Acta 188 (11):377. doi:10.1007/s00604-021-05042-2.
  • Xu, Q., J. Xu, H. Jia, Q. Tian, P. Liu, S. Chen, Y. Cai, X. Lu, X. Duan, and L. Lu. 2020. Hierarchical Ti3C2T MXene-derived sodium titanate nanoribbons/PEDOT for signal amplified electrochemical immunoassay of prostate specific antigen. Journal of Electroanalytical Chemistry 860:113869. doi:10.1016/j.jelechem.2020.113869.
  • Yao, Y., L. Lan, X. Liu, Y. Ying, and J. Ping. 2020. Spontaneous growth and regulation of noble metal nanoparticles on flexible biomimetic MXene paper for bioelectronics. Biosensors & Bioelectronics 148:111799. doi:10.1016/j.bios.2019.111799.
  • Yi, Y., Y. Ma, F. Ai, Y. Xia, H. Lin, and G. Zhu. 2021a. Novel methodology for anodic stripping voltammetric sensing of heavy-metal ions using Ti3C2Tx nanoribbons. Chemical Communications (Cambridge, England) 57 (63):7790–3. doi:10.1039/d1cc02560k.
  • Yi, Y., Y. Zhao, Z. Zhang, Y. Wu, and G. Zhu. 2021b. Recent developments in electrochemical detection of cadmium. Trends in Environmental Analytical Chemistry :e00152. doi:10.1016/j.teac.2021.e00152.
  • Yu, X., L. Xiang, S. Yang, S. Qu, X. Zeng, Y. Zhou, and R. Yang. 2021. A near-infrared fluorogenic probe with fast response for detecting sodium dithionite in living cells. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 245:118887. doi:10.1016/j.saa.2020.118887.
  • Zhang, Y., X. Jiang, J. Zhang, H. Zhang, and Y. Li. 2019. Simultaneous voltammetric determination of acetaminophen and isoniazid using MXene modified screen-printed electrode. Biosensors & Bioelectronics 130:315–21. doi:10.1016/j.bios.2019.01.043.
  • Zhang, H., Z. Wang, F. Wang, Y. Zhang, H. Wang, and Y. Liu. 2020b. In situ formation of gold nanoparticles decorated Ti3C2 MXenes nanoprobe for highly sensitive electrogenerated chemiluminescence detection of exosomes and their surface proteins. Analytical Chemistry 92 (7):5546–53. doi:10.1021/acs.analchem.0c00469.
  • Zhang, G., T. Wang, Z. Xu, M. Liu, C. Shen, and Q. Meng. 2020a. Synthesis of amino-functionalized Ti3C2Tx MXene by alkalization-grafting modification for efficient lead adsorption. Chemical Communications (Cambridge, England) 56 (76):11283–6. doi:10.1039/d0cc04265j.
  • Zhou, C.-H., X. Li, Q.-J. Zi, J. Wang, W.-Y. Zhao, and Q.-E. Cao. 2020. An enzyme-induced metallization-based electrochemical signal amplification strategy for ultrahigh sensitive alkaline phosphatase detection at attomolar concentrations. Journal of Analytical Chemistry 75 (6):812–9. doi:10.1134/S1061934820060192.
  • Zhu, G., and H. J. Lee. 2017. Electrochemical sandwich-type biosensors for α-1 antitrypsin with carbon nanotubes and alkaline phosphatase labeled antibody-silver nanoparticles. Biosensors & Bioelectronics 89 (Pt 2):959–63. doi:10.1016/j.bios.2016.09.080.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.