300
Views
17
CrossRef citations to date
0
Altmetric
Geochemical Analysis

Simultaneous and Selective Electrochemical Determination of Catechol and Hydroquinone on A Nickel Oxide (NiO) Reduced Graphene Oxide (rGO) Doped Multiwalled Carbon Nanotube (fMWCNT) Modified Platinum Electrode

, ORCID Icon, , , &
Pages 1466-1481 | Received 29 Aug 2021, Accepted 17 Nov 2021, Published online: 13 Dec 2021

References

  • Avan, A. A., and H. Filik. 2018. Electrochemical determination of dopamine using a graphene–screen-printed carbon electrode with magnetic solid-phase microextraction. Analytical Letters 51 (16):2628–44. doi:10.1080/00032719.2018.1437624.
  • Avan, A. A., and H. Filik. 2020. Simultaneous electrochemical sensing of dihydroxybenzene isomers at multi-walled carbon nanotubes aerogel/gold nanoparticles modified graphene screen-printed electrode. Journal of Electroanalytical Chemistry 878:114682. doi:10.1016/j.jelechem.2020.114682.
  • Aziz, H. M., M. H. Al-Mamoori, and L. H. Aboud. 2021. Synthesis and characterization of TiO2-rGO nanocomposite by pulsed laser ablation in liquid (PLAL-Method). Journal of Physics: Conference Series 1818 (1):012206. doi:10.1088/1742-6596/1818/1/012206.
  • Chen, J. S., Y. Li, M. J. Yu, and H. L. Lee. 2020a. Multiwalled carbon nanotubes/reduced graphene oxide nanocomposite electrode for electroanalytical determination of bisphenol A, 8-hydroxy-2’-deoxyguanosine and hydroquin one in urine. International Journal of Environmental Analytical Chemistry 100 (7):774–88. doi:10.1080/03067319.2019.1640874.
  • Chen, L., Y. Tang, K. Wang, C. Liu, and S. Luo. 2011. Electrochemistry communications direct electrodeposition of reduced graphene oxide on glassy carbon electrode and its electrochemical application. Electrochemistry Communications. 13 (2):133–7. doi:10.1016/j.elecom.2010.11.033.
  • Chen, X. Q., B. Zhang, L. Xie, and F. Wang. 2020b. MWCNTs polyurethane sponges with enhanced super-hydrophobicity for selective oil–water separation. Surface Engineering 36 (6):651–9. doi:10.1080/02670844.2019.1711303.
  • Chen, Y., X. Liu, S. Zhang, L. Yang, M. Liu, Y. Zhang, and S. Yao. 2017. Ultrasensitive and simultaneous detection of hydroquinone, catechol and resorcinol based on the electrochemical co-reduction prepared Au-Pd nanoflower/reduced graphene oxide nanocomposite. Electrochimica Acta 231:677–85. doi:10.1016/j.electacta.2017.02.060.
  • Dou, N., and J. Qu. 2021. Rapid synthesis of a hybrid of rGO/AuNPs/MWCNTs for sensitive sensing of 4-aminophenol and acetaminophen simultaneously. Analytical and Bioanalytical Chemistry 413 (3):813–20. doi:10.1007/s00216-020-02856-6.
  • Fan, L., and X. Kan. 2020. Sensitive detection of butylated hydroxyanisole based on free-standing paper decorated with gold and NiO nanoparticles. Microchemical Journal 159 (105511):105511. doi:10.1016/j.microc.2020.105511.
  • Goulart, L. A., R. Gonçalves, A. A. Correa, E. C. Pereira, and L. H. Mascaro. 2018. Synergic effect of silver nanoparticles and carbon nanotubes on the simultaneous voltammetric determination of hydroquinone, catechol, bisphenol A and phenol. Microchimica Acta 185 (1):1–9. doi:10.1007/s00604-017-2540-5.
  • Hicham, M., A. Fethi, S. Ha, and B. Khaldoun. 2021. Antifouling double layers of functionalized-multi-walled carbon nanotubes coated ZnO for sensitive and selective electrochemical detection of catechol. Fullerenes, Nanotubes and Carbon Nanostructures 30 (1):1–14. doi:10.1080/1536383X.2021.1940150.
  • Hu, F., S. Chen, C. Wang, R. Yuan, D. Yuan, and C. Wang. 2012. Study on the application of reduced graphene oxide and multiwall carbon nanotubes hybrid materials for simultaneous determination of catechol, hydroquinone, p-cresol and nitrite. Analytica Chimica Acta 724:40–6. doi:10.1016/j.aca.2012.02.037.
  • Huang, R., D. Liao, S. Chen, J. Yu, and X. Jiang. 2020. A strategy for effective electrochemical detection of hydroquinone and catechol: Decoration of alkalization-intercalated Ti3C2 with MOF-derived N-doped porous carbon. Sensors and Actuators B: Chemical 320:128386. doi:10.1016/j.snb.2020.128386.
  • Huang, Y. H., J. H. Chen, X. Sun, Z. B. Su, H. T. Xing, S. R. Hu, W. Weng, H. X. Guo, W. B. Wu, and Y. S. He. 2015. One-pot hydrothermal synthesis carbon nanocages-reduced graphene oxide composites for simultaneous electrochemical detection of catechol and hydroquinone. Sensors and Actuators B: Chemical 212:165–73. doi:10.1016/j.snb.2015.02.013.
  • Ibarra-García, V. G., A. V. Sánchez-Mendoza, D. Mendoza-Anaya, R. A. Vázquez-García, K. Alemán-Ayala, M. Ramírez-Cardona, and V. M. Castaño-Meneses. 2021. One step mechanosynthesis of graphene oxide directly from graphite. Fullerenes, Nanotubes and Carbon Nanostructures 29 (5):352–64. doi:10.1080/1536383X.2020.1843440.
  • Jahromi, M. P., S. E. Moradi, A. Nasrollahpour, and S. M. J. Moradi. 2017. FePt/reduced graphene oxide composites for high capacity hydrogen storage. Fullerenes, Nanotubes and Carbon Nanostructures 25 (5):295–300. doi:10.1080/1536383X.2017.1287699.
  • Jang, J., D. H. Kim, and W. Y. Lee. 2016. Electrochemical determination of bisphenol A by single-walled carbon nanotube composite glassy carbon electrode. Analytical Letters 49 (13):2018–30. doi:10.1080/00032719.2015.1134560.
  • Jiang, H., S. Wang, W. Deng, Y. Zhang, Y. Tan, Q. Xie, and M. Ma. 2017. Graphene-like carbon nanosheets as a new electrode material for electrochemical determination of hydroquinone and catechol. Talanta 164:300–6.
  • Jiang, H., D. Zhang, Z. He, Q. Lian, Z. Xue, X. Zhou, and X. Lu. 2015. A novel sensitive electrochemical sensor for the simultaneous determination of hydroquinone and catechol using tryptophan-functionalized graphene. Analytical Letters 48 (9):1426–36. doi:10.1080/00032719.2014.984188.
  • Kong, F. Y., R. F. Li, L. Yao, Z. X. Wang, H. Y. Li, W. X. Lv, and W. Wang. 2019. Voltammetric simultaneous determination of catechol and hydroquinone using a glassy carbon electrode modified with a ternary hybrid material composed of reduced graphene oxide, magnetite nanoparticles and gold nanoparticles. Microchimica Acta 186 (3):1–8. doi:10.1007/s00604-019-3273-4.
  • Ming, S. S., N. S. K. Gowthaman, H. N. Lim, P. Arul, E. Narayanamoorthi, I. Ibrahim, H. Jaafar, and S. A. John. 2021. Aluminium MOF fabricated electrochemical sensor for the ultra-sensitive detection of hydroquinone in water samples. Journal of Electroanalytical Chemistry 883:115067. doi:10.1016/j.jelechem.2021.115067.
  • Nochit, P., P. Sub-Udom, and S. Teepoo. 2021. Multiwalled carbon nanotube (MWCNT) based electrochemical paper-based analytical device (ePAD) for the determination of catechol in wastewater. Analytical Letters 54 (15):2484–97. doi:10.1080/00032719.2021.1872591.
  • Pei, M., Y. Wu, Z. Qi, and D. Mei. 2020. Synthesis and electrochemical performance of NiO/Fe3O4/rGO as anode material for lithium ion battery. Ionics 26 (8):3831–40. doi:10.1007/s11581-020-03545-1.
  • Prasad, R., and B. R. Bhat. 2015. Multi-wall carbon nanotube–NiO nanoparticle composite as enzyme-free electrochemical glucose sensor. Sensors and Actuators B: Chemical 220:81–90. doi:10.1016/j.snb.2015.05.065.
  • Sun, M., G. Shen, Z. Bai, H. Zhang, H. Liu, and X. Liang. 2021. Electrochemical determination of hydrogen peroxide using a horseradish peroxidase (HRP) modified gold–nickel alloy nanoparticles glassy carbon electrode (GCE). Analytical Letters 54 (16):2565–73. doi:10.1080/00032719.2021.1878367.
  • Üğe, A., D. K. Zeybek, and B. Zeybek. 2018. An electrochemical sensor for sensitive detection of dopamine based on MWCNTs/CeO2-PEDOT composite. Journal of Electroanalytical Chemistry 813:134–42. doi:10.1016/j.jelechem.2018.02.028.
  • Wang, C., L. Zhang, H. Yuan, Y. Fu, Z. Zeng, and J. Lu. 2021a. Preparation of a PES/PFSA-g-MWCNT ultrafiltration membrane with improved permeation and antifouling properties. New Journal of Chemistry 45 (11):4950–62. doi:10.1039/D0NJ05322H.
  • Wang, H. Y., Y. Jia, G. F. Jing, and X. C. Wu. 2021b. A novel toxicity prediction model for hydrazine compounds based on 1D–3D molecular descriptors. Computational Toxicology 18:100169. doi:10.1016/j.comtox.2021.100169.
  • Wang, Y., X. Liu, S. Liu, Y. Zhang, and F. Chang. 2020. Multilayered chemically modified electrode based on carbon nanotubes conglutinated by polydopamine: A new strategy for the electrochemical signal enhancement for the determination of catechol. Analytical Letters 53 (7):1061–74. doi:10.1080/00032719.2019.1695810.
  • Xue, Z., X. Fu, H. Rao, X. Zhou, X. Liu, and X. Lu. 2018. A new electron transfer mediator actuated non-enzymatic nitrite sensor based on the voltammetry synthetic composites of 1-(2-pyridylazo)-2-naphthol nanostructures coated electrochemical reduced graphene oxide nanosheets. Electrochimica Acta 260:623–9. doi:10.1016/j.electacta.2017.11.181.
  • Yang, M., J. Lu, X. Wang, H. Zhang, F. Chen, J. Sun, J. Yang, Y. Sun, and G. Lu. 2020. Acetone sensors with high stability to humidity changes based on Ru-doped NiO flower-like microspheres. Sensors and Actuators B: Chemical 313:127965. doi:10.1016/j.snb.2020.127965.
  • Yang, S., M. Yang, Q. Liu, X. Wang, H. Fa, Y. Wang, and C. Hou. 2019. An ultrasensitive electrochemical sensor based on multiwalled carbon nanotube@ reduced graphene oxide nanoribbon composite for simultaneous determination of hydroquinone, catechol and resorcinol. Journal of the Electrochemical Society 166 (6):B547–553. doi:10.1149/2.0011908jes.
  • Yang, Y. J., and L. Weikun. 2015. Simultaneous determination of catechol, hydroquinone, and resorcinol on CTAB functionalized graphene oxide/multiwalled carbon nanotube modified electrode. Fullerenes, Nanotubes and Carbon Nanostructures 23 (5):410–7. doi:10.1080/1536383X.2014.924509.
  • Yu, H., R. Li, and K. L. Song. 2019. Amperometric determination of nitrite by using a nanocomposite prepared from gold nanoparticles, reduced graphene oxide and multi-walled carbon nanotubes. Microchimica Acta 186 (9):1–9. doi:10.1007/s00604-019-3735-8.
  • Zeng, X., F. S. Zhang, B. Zhu, and L. Zhu. 2015. Fluorescence determination of merucury (II) using a thymine aptamer. Analytical Letters 48 (14):2208–16. doi:10.1080/00032719.2015.1020430.
  • Zhang, H., X. Bo, and L. Guo. 2015. Sensors and actuators B: chemical electrochemical preparation of porous graphene and its electrochemical application in the simultaneous determination of hydroquinone, catechol, and resorcinol. Sensors and Actuators B: Chemical 220:919–26. doi:10.1016/j.snb.2015.06.035.
  • Zhang, X., Z. Zhang, Q. Liao, S. Liu, Z. Kang, and Y. Zhang. 2016. Nonenzymatic glucose sensor based on in situ reduction of Ni/NiO-graphene nanocomposite. Sensors 16 (11):1791. doi:10.3390/s16111791.
  • Zhang, Y., M. Qin, C. Zhao, X. Dou, C. Xing, M. Sun, X. Ma, and C. Feng. 2020. Controlled chiral transcription and efficient separation via graphene oxide encapsulated helical supramolecular assembly. Carbon 165:82–9. doi:10.1016/j.carbon.2020.04.032.
  • Zhao, L., J. Yu, S. Yue, L. Zhang, Z. Wang, P. Guo, and Q. Liu. 2018. Nickel oxide/carbon nanotube nanocomposites prepared by atomic layer deposition for electrochemical sensing of hydroquinone and catechol. Journal of Electroanalytical Chemistry 808:245–51. doi:10.1016/j.jelechem.2017.12.019.
  • Zhao, X. J., D. Chen, P. A. Kilmartin, and B. N. Jiao. 2019. Simultaneous determination of phenolics and polymethoxylated flavones in citrus fruits by ultra-high performance liquid chromatography coupled with triple-quadrupole mass spectrometry (UHPLC-QqQ-MS). Analytical Letters 52 (12):1926–38. doi:10.1080/00032719.2019.1584628.
  • Zhu, Y., S. Huai, J. Jiao, Q. Xu, H. Wu, and H. Zhang. 2020. Fullerene and platinum composite-based electrochemical sensor for the selective determination of catechol and hydroquinone. Journal of Electroanalytical Chemistry 878:114726. doi:10.1016/j.jelechem.2020.114726.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.