390
Views
4
CrossRef citations to date
0
Altmetric
Sample Preparation

Cloud Point Microextraction of Sudan IV from Food and Cosmetics with Determination by Spectrophotometry

, &
Pages 464-475 | Received 18 Jan 2022, Accepted 25 Feb 2022, Published online: 11 Mar 2022

References

  • Ansari, S. 2017. Application of magnetic molecularly imprinted polymer as a versatile and highly selective tool in food and environmental analysis: Recent developments and trends. TrAC Trends in Analytical Chemistry 90:89–106. doi:10.1016/j.trac.2017.03.001.
  • Arain, S. A., T. G. Kazi, H. I. Afridi, M. S. Arain, A. H. Panhwar, N. Khan, J. A. Baig, and F. Shah. 2016. A new dispersive liquid–liquid microextraction using ionic liquid based microemulsion coupled with cloud point extraction for determination of copper in serum and water samples. Ecotoxicology and Environmental Safety 126:186–92. doi:10.1016/j.ecoenv.2015.12.035.
  • Arya, S. S., A. M. Kaimal, M. Chib, S. K. Sonawane, and P. L. Show. 2019. Novel, energy efficient and green cloud point extraction: Technology and applications in food processing. Journal of Food Science and Technology 56 (2):524–34. doi:10.1007/s13197-018-3546-7.
  • Ates, E., K. Mittendorf, and H. Senyuva. 2011. LC/MS method using cloud point extraction for the determination of permitted and illegal food colors in liquid, semiliquid, and solid food matrixes: Single-laboratory validation. Journal of AOAC International 94 (6):1853–62.
  • Aydin, F., E. Yilmaz, and M. Soylak. 2018. Vortex assisted deep eutectic solvent (DES)-emulsification liquid-liquid microextraction of trace curcumin in food and herbal tea samples. Food Chemistry 243:442–7. doi:10.1016/j.foodchem.2017.09.154.
  • Başoğlu, A., G. Tosun, M. Ocak, H. Alp, N. Yaylı, and Ü. Ocak. 2015. Simple time-saving method for iron determination based on fluorescence quenching of an azaflavanon-3-ol compound. Journal of Agricultural and Food Chemistry 63 (10):2654–9. doi:10.1021/jf505336d.
  • Bazregar, M., M. Rajabi, Y. Yamini, A. Asghari, and M. Hemmati. 2016. Tandem air-agitated liquid-liquid microextraction as an efficient method for determination of acidic drugs in complicated matrices. Analytica Chimica Acta 917:44–52. doi:10.1016/j.aca.2016.03.005.
  • Bejaoui Kefi, B., I. Bouchmila, P. Martin, and N. M’Hamdi. 2022. Titanium dioxide nanotubes as solid-phase extraction adsorbent for the determination of copper in natural water samples. Materials 15 (3):822. doi:10.3390/ma15030822.
  • Bisgin, A. T., I. Narin, M. Ucan, and M. Soylak. 2015. A new cloud point extraction procedure for determination of trace amount crystal violet in wastewater by UV-VIS. Spectrometry Oxidation Communications 38:232–40.
  • Bozyiğit, G. D., M. F. Ayyıldız, D. S. Chormey, G. O. Engin, and S. Bakırdere. 2022. Trace level determination of eleven nervous system-active pharmaceutical ingredients by switchable solvent-based liquid-phase microextraction and gas chromatography-mass spectrometry with matrix matching calibration strategy. Environmental Monitoring and Assessment 194 (2):58–62. doi:10.1007/s10661-021-09708-5.
  • Calbiani, F., M. Careri, L. Elviri, A. Mangia, L. Pistara, and I. Zagnoni. 2004. Development and in-house validation of a liquid chromatography–electrospray–tandem mass spectrometry method for the simultaneous determination of Sudan I, Sudan II, Sudan III and Sudan IV in hot chilli products. Journal of Chromatography A 1042 (1–2):123–30.
  • Chaikhan, P., Y. Udnan, R. J. Ampiah-Bonney, and W. C. Chaiyasith. 2022. Fast sequential multi element analysis of lead and cadmium in canned food samples using effervescent tablet-assisted switchable solvent based liquid phase microextraction (EA-SS-LPME) coupled with high-resolution continuum source flame atomic absorption spectrometry (HR-CS-FAAS). Food Chemistry 375:131857. doi:10.1016/j.foodchem.2021.131857.
  • Coscueta, E. R., L. P. Malpiedi, and B. B. Nerli. 2018. Micellar systems of aliphatic alcohol ethoxylates as a sustainable alternative to extract soybean isoflavones. Food Chemistry 264:135–41. doi:10.1016/j.foodchem.2018.05.015.
  • Divrikli, U., M. Soylak, and M. Dogan. 2000. Spectrophotometric determination of iodine by alkaline ashing and iodine starch method in urine samples. Chemia Analityczna 45 (2):257–64.
  • Dogru, S., E. Yilmaz, S. B. Gunduz, and M. Soylak. 2021. An easy and green amine-based microextraction strategy combined UV-Vis spectrophotometric detection for mercury in natural water samples. Journal of the Iranian Chemical Society 18 (11):3069–75. doi:10.1007/s13738-021-02256-2.
  • Doğutan, M., H. Filik, S. E. M. A. Demirci, and R. Apak. 2000. The use of palmitoyl hydroxyquinoline- functionalized amberlite XAD-2 copolymer resin for the preconcentration and speciation analysis of gallium (III). Separation Science and Technology 35 (13):2083–96. doi:10.1081/SS-100102090.
  • Doong, R., and W. Lei. 2003. Solubilization and mineralization of polycyclic aromatic hydrocarbons by Pseudomonas putida in the presence of surfactant. Journal of Hazardous Materials 96 (1):15–27. doi:10.1016/S0304-3894(02)00167-X.
  • Duran, C., D. Ozdes, V. N. Bulut, M. Tufekcī, and M. Soylak. 2011. Cloud-point extraction of rhodamine 6G by using Triton X-100 as the non-ionic surfactant. Journal of AOAC INTERNATIONAL 94 (1):286–92. doi:10.1093/jaoac/94.1.286.
  • Elçi, L., M. Soylak, A. Uzun, E. Büyükpatır, and M. Doğan. 2000. Determination of trace impurities in some nickel compounds by flame atomic absorption spectrometry after solid phase extraction using Amberlite XAD-16 resin. Fresenius' Journal of Analytical Chemistry 368 (4):358–61. doi:10.1007/s002160000448.
  • Ertas, E., H. Ozer, and C. Alasalvar. 2007. A rapid HPLC method for determination of Sudan dyes and Para Red in red chilli pepper. Food Chemistry 105 (2):756–60. doi:10.1016/j.foodchem.2007.01.010.
  • Farid, R. K., and G. Rahimi. 2022. Oilothermal, a novel pyrolysis method for fabrication of carbon dots-loaded carriers from cyanobacteria for use in solid-phase extraction of cadmium. Journal of the Taiwan Institute of Chemical Engineers 132 (1): 104210.
  • Filik, H., D. Giray, B. Ceylan, and R. Apak. 2011. A novel fiber optic spectrophotometric determination of nitrite using Safranin O and cloud point extraction. Talanta 85 (4):1818–24. doi:10.1016/j.talanta.2011.07.052.
  • Filik, H., K. I. Berker, N. Balkis, and R. Apak. 2004. Simultaneous preconcentration of vanadium (V/IV) species with palmitoyl quinolin-8-ol bonded to amberlite XAD 2 and their separate spectrophotometric determination with 4-(2-pyridylazo)-resorcinol using CDTA as masking agent. Analytica Chimica Acta 518 (1–2):173–9. doi:10.1016/j.aca.2004.05.012.
  • Filik, H., T. Cengel, and R. Apak. 2009. Selective cloud point extraction and graphite furnace atomic absorption spectrometric determination of molybdenum (VI) ion in seawater samples. Journal of Hazardous Materials 169 (1–3):766–71. doi:10.1016/j.jhazmat.2009.04.017.
  • Filik, H., Z. Yanaz, and R. Apak. 2008. Selective determination of total vanadium in water samples by cloud point extraction of its ternary complex. Analytica Chimica Acta 620 (1–2):27–33. doi:10.1016/j.aca.2008.05.024.
  • Ghaedi, M., A. Shokrollahi, K. Niknam, E. Nikman, and M. Soylak. 2009. Development of Efficient method for preconcentration and determination of copper, nickel, zinc and iron ions in environmental samples by combination of cloud point extraction and flame atomic absorption spectrometry. Central European Journal of Chemistry 7 (1):148–54.
  • Ghasemi, E., and M. Kaykhaii. 2016. Application of a novel micro-cloud point extraction for preconcentration and spectrophotometric determination of azo dyes. Journal of the Brazilian Chemical Society 27:1521–6. doi:10.5935/0103-5053.20160030.
  • Hong, J. Y., N. H. Park, K. H. Yoo, and J. Hong. 2013. Comprehensive impurity profiling and quantification of Sudan III dyes by gas chromatography/mass spectrometry. Journal of Chromatography A 1297:186–95. doi:10.1016/j.chroma.2013.04.064.
  • Hu, K., J. Qiao, W. Zhu, X. Chen, and C. Dong. 2019. Magnetic naphthalene-based polyimide polymer for extraction of Sudan dyes in chili sauce. Microchemical Journal 149:104073. doi:10.1016/j.microc.2019.104073.
  • Jalbani, N., and M. Soylak. 2015. Preconcentration/separation of lead at trace level from water samples by mixed micelle cloud point extraction. Journal of Industrial and Engineering Chemistry 29:48–51. doi:10.1016/j.jiec.2015.02.025.
  • Jalbani, N., M. Soylak, A. Munshi, and T. Kazi. 2014. Multivariate optimization of parameters for the determination of thorium in rock samples by cloud point extraction coupled to UV-Visible spectrophotometry. Fresenius Environmental Bulletin 23:2304–9.
  • Junxiong, M. Y. H. 2000. Application of cloud-point extraction to environmental chemistry. Shanghai Environmental Sciences 7 (19):319–24.
  • Kallury, K., J. Gleeson, and M. Garriques. 2007. Solid phase extraction for detection of sudan dye contaminants in spices with HPLC/UV detection. LC GC North America 25 (9) :49.
  • Kandeh, S. H., S. Amini, and H. Ebrahimzadeh. 2022. Development of poly(vinyl alcohol)/chitosan/aloe vera gel electrospun composite nanofibers as a novel sorbent for thin-film micro-extraction of pesticides in water and food samples followed by HPLC-UV analysis. New Journal of Chemistry 46 (5):2431–40. doi:10.1039/D1NJ05634D.
  • Karatepe, A., C. Akalin, and M. Soylak. 2016. Solid-phase extraction of some food dyes on sea sponge column and determination by UV-Vis spectrophotometer. Desalination and Water Treatment 57 (53):25822–9. doi:10.1080/19443994.2016.1153981.
  • Karatepe, A., C. Akalin, and M. Soylak. 2017. Spectrophotometric determination of carmoisine after cloud point extraction using Triton X-114. Turkish Journal of Chemistry 41:256–62. doi:10.3906/kim-1606-45.
  • Li, B. L., J. H. Luo, H. Q. Luo, and N. B. Li. 2015. A novel conducting poly(p-aminobenzene sulphonic acid)-based electrochemical sensor for sensitive determination of Sudan I and its application for detection in food stuffs. Food Chemistry 173:594–9. doi:10.1016/j.foodchem.2014.10.060.
  • Li, Z., D. Wang, F. Lv, J. Chen, C. Wu, Y. Li, J. Shen, and Y. Li. 2022. Synthesis and characterization of high-purity mesoporous alumina with excellent adsorption capacity for congo red. Materials 15 (3):970. doi:10.3390/ma15030970.
  • Liu, S., X. Zhang, X. Lin, X. Wu, F. Fu, and Z. Xie. 2007a. Development of a new method for analysis of Sudan dyes by pressurized CEC with amperometric detection. Electrophoresis 28 (11):1696–703. doi:10.1002/elps.200600486.
  • Liu, W., W. Zhao, J. Chen, and M. Yang. 2007b. A cloud point extraction approach using Triton X-100 for the separation and preconcentration of Sudan dyes in chilli powder. Analytica Chimica Acta 605 (1):41–5. doi:10.1016/j.aca.2007.10.034.
  • López-Jiménez, F. J., S. Rubio, and D. Pérez-Bendito. 2010. Supramolecular solvent-based microextraction of Sudan dyes in chilli-containing foodstuffs prior to their liquid chromatography-photodiode array determination. Food Chemistry 121 (3):763–9. doi:10.1016/j.foodchem.2009.12.081.
  • Martins, I. M., S. N. Rodrigues, M. F. Barreiro, and A. E. Rodrigues. 2011. Polylactide-based thyme oil microcapsules production: Evaluation of surfactants. Industrial & Engineering Chemistry Research 50 (2):898–904. doi:10.1021/ie101815f.
  • Mazzotti, F., L. D. Donna, L. Maiuolo, A. Napoli, R. Salerno, A. Sajjad, and G. Sindona. 2008. Assay of the set of all Sudan azodye (I, II, III, IV, and Para-Red) contaminating agents by liquid chromatography-tandem mass spectrometry and isotope dilution methodology. Journal of Agricultural and Food Chemistry 56 (1):63–7. doi:10.1021/jf072286y.
  • Moreno-González, D., P. Jáč, F. Švec, and L. Nováková. 2020. Determination of Sudan dyes in chili products by micellar electrokinetic chromatography-MS/MS using a volatile surfactant. Food Chemistry 310:125963. doi:10.1016/j.foodchem.2019.125963.
  • Mortada, W. I. 2020. Recent developments and applications of cloud point extraction: A critical review. Microchemical Journal 157:105055. doi:10.1016/j.microc.2020.105055.
  • Neves, H. P., G. M. D. Ferreira, G. M. D. Ferreira, L. R. de Lemos, G. D. Rodrigues, V. A. Leão, and A. B. Mageste. 2022. Liquid-liquid extraction of rare earth elements using systems that are more environmentally friendly: Advances, challenges and perspectives. Separation and Purification Technology 282 (1) :120064.
  • Nishad, J., A. Dutta, S. Saha, S. G. Rudra, E. Varghese, R. R. Sharma, M. Tomar, M. Kumar, and C. Kaur. 2021. Ultrasound-assisted development of stable grapefruit peel polyphenolic nano-emulsion: Optimization and application in improving oxidative stability of mustard oil. Food Chemistry 334:127561. doi:10.1016/j.foodchem.2020.127561.
  • Ozkantar, N., E. Yilmaz, M. Soylak, and M. Tuzen. 2015. Solid-phase extraction of iridium from soil and water samples by using activated carbon cloth prior to its spectrophotometric determination. Environmental Monitoring and Assessment 187 (8):501. doi:10.1007/s10661-015-4720-2.
  • Purkait, M. K., S. DasGupta, and S. De. 2006. Determination of design parameters for the cloud point extraction of congo red and eosin dyes using TX-100. Separation and Purification Technology 51 (2):137–42. doi:10.1016/j.seppur.2005.12.027.
  • Qin, X. Y., J. Meng, X. Y. Li, J. Zhou, X. L. Sun, and A. D. Wen. 2008. Determination of venlafaxine in human plasma by high-performance liquid chromatography using cloud-point extraction and spectrofluorimetric detection. Journal of Chromatography B, Analytical Technologies in the Biomedical and Life Sciences 872 (1–2):38–42. doi:10.1016/j.jchromb.2008.06.052.
  • Racheva, P. V., N. P. Milcheva, F. Genc, and K. B. Gavazov. 2021. A centrifuge-less cloud point extraction-spectrophotometric determination of copper (II) using 6-hexyl-4-(2-thiazolylazo) resorcinol. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 262:120106. doi:10.1016/j.saa.2021.120106.
  • Ridha, R., E. Azooz, and S. S. Taresh. 2022. Rapid palladium preconcentration and spectrophotometric determination in water and soil samples. Analytical and Bioanalytical Chemistry Research 9 (3):251–8.
  • Sahin, C. A., M. Efecınar, and N. Satıroglu. 2010. Combination of cloud point extraction and flame atomic absorption spectrometry for preconcentration and determination of nickel and manganese ions in water and food samples. Journal of Hazardous Materials 176:672–7.
  • Santalad, A., S. Srijaranai, R. Burakham, J. D. Glennon, and R. L. Deming. 2009. Cloud-point extraction and reversed-phase high-performance liquid chromatography for the determination of carbamate insecticide residues in fruits. Analytical and Bioanalytical Chemistry 394 (5):1307–17. doi:10.1007/s00216-009-2663-6.
  • Satıroglu, N., and I. Tokgoz. 2010. Cloud point extraction of aluminum (III) in water samples and determination by electrothermal atomic absorption spectrometry, flame atomic absorption spectrometry and UV-visible spectrophotometry. International Journal of Environmental Analytical Chemistry 90:560–72.
  • Shi, J., and L. Chen. 2014. Analysis of Sudan dyes in lipstick samples by cloud-point extraction and high-performance liquid chromatography. Analytical Methods 6 (20):8129–35. doi:10.1039/C4AY00814F.
  • Sivrikaya Ozak, S., and Y. Yılmaz. 2020. Ultrasound-assisted hydrophobic deep eutectic solvent based solid-liquid microextraction of Sudan dyes in spice samples. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 236:118353. doi:10.1016/j.saa.2020.118353.
  • Soylak, M., L. Elçi, and M. Doğan. 1995. Preconcentration of trace amounts of tungsten on Amberlite XAD-7 for its spectrophotometric determination in hot spring water. Fresenius' Journal of Analytical Chemistry 351 (2-3):308–10. doi:10.1007/BF00321654.
  • Soylak, M., M. Celik, and F. Uzcan. 2020. Supramolecular solvent-based microextraction of Sudan Orange G at trace levels for its separation, preconcentration and spectrophotometric determination. International Journal of Environmental Analytical Chemistry 100 (8):935–44. doi:10.1080/03067319.2019.1645842.
  • Soylak, M., O. Ozalp, and F. Uzcan. 2021. Ultrasound assisted supramolecular liquid phase microextraction procedure for Sudan I at trace level in environmental samples. Turkish Journal of Chemistry 45 (5):1327–35. doi:10.3906/kim-2104-5.
  • Soylak, M., S. Baran, and F. Uzcan. 2022. Ultrasound assisted deep eutectic solvent based liquid phase microextraction for the preconcentration and spectrophotometric determination of amaranth (E123) in water and food samples. Instrumentation Science & Technology 50 (2):203–18. doi:10.1080/10739149.2021.1982726.
  • Soylak, M., U. Şahin, and L. Elçi. 1996. Spectrophotometric determination of molybdenum in steel samples utilising selective sorbent extraction on amberlite XAD-8 resin. Analytica Chimica Acta 322 (1-2):111–5. doi:10.1016/0003-2670(95)00603-6.
  • Soylak, M., Y. E. Unsal, and M. Tuzen. 2011. Spectrophotometric determination of trace levels of allura red in water samples after separation and preconcentration. Food and Chemical Toxicology : An International Journal Published for the British Industrial Biological Research Association 49 (5):1183–7. doi:10.1016/j.fct.2011.02.013.
  • Stefanova-Bahchevanska, T., N. Milcheva, S. Zaruba, V. Andruch, V. Delchev, K. Simitchiev, and K. Gavazov. 2017. A green cloud-point extraction-chromogenic system for vanadium determination. Journal of Molecular Liquids 248:135–42. doi:10.1016/j.molliq.2017.10.046.
  • Stuart, B. L., R. F. Inger, and H. K. Voris. 2006. High level of cryptic species diversity revealed by sympatric lineages of Southeast Asian forest frogs. Biology Letters 2 (3):470–4. doi:10.1098/rsbl.2006.0505.
  • Tirado, D. F., A. Latini, and L. Calvo. 2021. The encapsulation of hydroxytyrosol-rich olive oil in Eudraguard® protect via supercritical fluid extraction of emulsions. Journal of Food Engineering 290:110215. doi:10.1016/j.jfoodeng.2020.110215.
  • Trakultamupatam, P., J. F. Scamehorn, and S. Osuwan. 2002. Removal of volatile aromatic contaminants from wastewater by cloud point extraction. Separation Science and Technology 37 (6):1291–305. doi:10.1081/SS-120002612.
  • Uzcan, F., Z. Erbas, and M. Soylak. 2019. Supramolecular solvent-based liquid phase microextraction of malachite green at trace level from water samples for its UV–vis spectrophotometric detection. International Journal of Environmental Analytical Chemistry 99 (6):595–605. doi:10.1080/03067319.2019.1604952.
  • Wozniak, M. M., B. Witkowski, M. Ganeczko, T. Gierczak, and M. Biesaga. 2021. Textile dyeing in Medieval Sudan evidenced by HPLC-MS analyses: Material traces of a disappeared activity. Journal of Archaeological Science: Reports 38:103098. doi:10.1016/j.jasrep.2021.103098.
  • Wu, F., J. Deng, L. Hu, Z. Zhang, H. Jiang, Y. Li, Z. Yi, and T. Ngai. 2020. Investigation of the stability in Pickering emulsions preparation with commercial cosmetic ingredients. Colloids and Surfaces A: Physicochemical and Engineering Aspects 602:125082. doi:10.1016/j.colsurfa.2020.125082.
  • Yan, H., M. Gao, and J. Qiao. 2012. New ionic liquid modified polymeric microspheres for solid-phase extraction of four Sudan dyes in foodstuff samples. Journal of Agricultural and Food Chemistry 60 (27):6907–12. doi:10.1021/jf301224t.
  • Zahedi, S. S., A. Larki, S. J. Saghanezhad, and Y. Nikpour. 2022. 1,4-Diazabicyclo [2.2.2] octane functionalized mesoporous silica SBA-15 (SBA-15@DABCO): A novel highly selective adsorbent for selective separation/preconcentration of Cr(VI) from environmental water samples. Silicon 14 (3):923–34. doi:10.1007/s12633-020-00903-6.
  • Zeng, C., L. Ji, C. Zhou, F. Zhang, M. Liu, and Q. Xie. 2015. Chemical vapor generation of bismuth in non-aqueous phase based on cloud point extraction coupled with thermospray flame furnace atomic absorption spectrometric determination. Microchemical Journal 119:1–5. doi:10.1016/j.microc.2014.10.003.
  • Zhang, Z., S. Xu, J. Li, H. Xiong, H. Peng, and L. Chen. 2012. Selective solid-phase extraction of Sudan I in chilli sauce by single-hole hollow molecularly imprinted polymers. Journal of Agricultural and Food Chemistry 60 (1):180–7. doi:10.1021/jf2041609.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.