189
Views
1
CrossRef citations to date
0
Altmetric
Environmental Analysis

Glutathione S-Transferase Activity in Wild Plants with 2,4-Dichlorophenol (2,4-DCP) Phytoremediation Potential

, &
Pages 411-421 | Received 02 Dec 2021, Accepted 06 Apr 2022, Published online: 27 Apr 2022

References

  • Agostini, E., M. S. Coniglio, S. R. Milrad, H. A. Tigier, and A. M. Giulietti. 2003. Phytoremediation of 2,4-dichlorophenol by Brassica napus hairy root cultures. Biotechnology and Applied Biochemistry 37 (Pt 2):139–44. doi:10.1042/ba20020079.
  • Ahlborg, U. G., and T. M. Thunberg. 1980. Chlorinated phenols: Occurrence, toxicity, metabolism, and environmental impact. Critical Reviews in Toxicology 7 (1):1–35. doi:10.3109/10408448009017934.
  • Angelini, V. A., E. Agostini, M. I. Medina, and P. S. González. 2014. Use of hairy roots extracts for 2,4-DCP removal and toxicity evaluation by Lactuca sativa test. Environmental Science and Pollution Research International 21 (4):2531–9. doi:10.1007/s11356-013-2172-1.
  • Anjum, N. A. I. Ahmad, P. M. Eduarda, A. C. Duarte, S. Umar, and N. A. Khan. 2012. The plant family Brassicaceae contribution towards phytoremediation, 359p. Dordrecht: Springer.
  • Ceylan, Z., and Ş. D. Aydın. 2020. Investigation of the effect of substituent species/positions and numbers on removal of toxicity from chloro and nitro phenol compounds with Fenton and Fenton-like processes. Journal of the Chemical Society of Pakistan 42 (05):639–57.
  • Ceylan, Z., M. Moharramzadeh, and Ö. Atıcı. 2021. Investigating usage potential of Datura stramonium L. for phytoremediation of 2, 4-dichlorophenol. Hacettepe Journal of Biology and Chemistry 49 (2):157–66. doi:10.15671/hjbc.689446.
  • Czaplicka, M. 2004. Sources and transformations of chlorophenols in the natural environment. The Science of the Total Environment 322 (1–3):21–39. doi:10.1016/j.scitotenv.2003.09.015.
  • Dabaan, M. E. 1997. Herbicide cross resistance in atrazine-resistant velvetleaf (Abutilon theophrasti) and redroot pigweed (Amaranthus retroflexus). M.S. Thesis, West Virginia University, USA.
  • Del Río, M., R. Font, C. Almela, D. Vélez, R. Montoro, and A. D. H. Bailón. 2002. Heavy metals and arsenic uptake by wild vegetation in the Guadiamar River area after the toxic spill of the Aznalcóllar mine. Journal of Biotechnology 98 (1):125–37. doi:10.1016/S0168-1656(02)00091-3.
  • Dixon, D. P., A. Lapthorn, and R. Edwards. 2002. Plant glutathione transferases. Genome Biology 3 (3):REVIEWS3004–10. doi:10.1186/gb-2002-3-3-reviews3004.
  • Estévez, I. H., and M. R. Hernández. 2020. Plant glutathione S-transferases: An overview. Plant Gene 23:100233.
  • Farraji, H., N. Q. Zaman, R. Tajuddin, and H. Faraji. 2016. Advantages and disadvantages of phytoremediation: A concise review. International Journal of Environmental and Technological Sciences 2:69–75.
  • Fatta-Kassinos, D., I. K. Kalavrouziotis, P. H. Koukoulakis, and M. I. Vasquez. 2011. The risks associated with wastewater reuse and xenobiotics in the agroecological environment. The Science of the Total Environment 409 (19):3555–63. doi:10.1016/j.scitotenv.2010.03.036.
  • Garcinuño, R. M., H. P. Fernandez, and C. Camara. 2006. Removal of carbaryl, linuron, and permethrin by Lupinus angustifolius under hydroponic conditions. Journal of Agricultural and Food Chemistry 54 (14):5034–9. doi:10.1021/jf060850j.
  • Ghazaryan, K. A., H. S. Movsesyan, T. M. Minkina, S. N. Sushkova, and V. D. Rajput. 2021. The identification of phytoextraction potential of Melilotus officinalis and Amaranthus retroflexus growing on copper- and molybdenum-polluted soils . Environmental Geochemistry and Health 43 (4):1327–35. doi:10.1007/s10653-019-00338-y.
  • Habig, W. H., M. J. Pabst, and W. B. Jakoby. 1974. Glutathione S-transferase. The first enzymatic step in mercapturic acid formation. Journal of Biological Chemistry 249 (22):7130–9. doi:10.1016/S0021-9258(19)42083-8.
  • Handiseni, M., J. Brown, R. Zemetra, and M. Mazzola. 2011. Herbicidal activity of Brassicaceae seed meal on wild oat (Avena fatua), Italian ryegrass (Lolium multiflorum), redroot pigweed (Amaranthus retroflexus), and prickly lettuce (Lactuca serriola). Weed Technology 25 (1):127–34. doi:10.1614/WT-D-10-00068.1.
  • Iranbakhsh, A., M. Oshaghi, and A. Majd. 2006. Distribution of atropine and scopolamine in different organs and stages of development in Datura stramonium L. (Solanaceae). Structure and ultrastructure of biosynthesizing cells. Acta Biologica Cracoviensia Series Botanica 48 (1):13–8.
  • Islam, F., J. Wang, M. A. Farooq, M. S. Khan, L. Xu, J. Zhu, M. Zhao, S. Munos, Q. X. Li, and W. Zhou. 2018. Potential impact of the herbicide 2,4-dichlorophenoxyacetic acid on human and ecosystems. Environment International 111:332–51. doi:10.1016/j.envint.2017.10.020.
  • Khan, M. Z., F. Khan, and S. Sabir. 2011. Aerobic granular treatment of 2,4‐dichlorophenol. The Canadian Journal of Chemical Engineering 89 (4):914–20. doi:10.1002/cjce.20445.
  • Liu, N., J. Dai, H. Tian, H. He, and Y. Zhu. 2019. Effect of ethylenediaminetetraacetic acid and biochar on Cu accumulation and subcellular partitioning in Amaranthus retroflexus L. Environmental Science and Pollution Research International 26 (10):10343–53. doi:10.1007/s11356-019-04448-z.
  • Loehr, R. C., and R. Krishnamoorthy. 1988. Terrestrial bioaccumulation potential of phenolic compounds. Hazardous Waste and Hazardous Materials 5 (2):109–19. doi:10.1089/hwm.1988.5.109.
  • Ma, J. H., G. F. Xing, W. X. Yang, L. L. Ma, M. Gao, Y. G. Wang, and Y. H. Han. 2012. Inhibitory effects of leachate from Eupatorium adenophorum on germination and growth of Amaranthus retroflexus and Chenopodium glaucum. Acta Ecologica Sinica 32 (1):50–6. doi:10.1016/j.chnaes.2011.12.004.
  • Martins, L., and J. Teixeira. 2021. Gene-and organ-specific impact of paracetamol on Solanun nigrum L.’s γ-glutamylcysteine synthetase and glutathione S-transferase and consequent phytoremediation fitness. Acta Physiologiae Plantarum 43 (4):1–10. doi:10.1007/s11738-021-03224-2.
  • Middaugh, D. P., R. L. Thomas, S. E. Lantz, C. S. Heard, and J. G. Mueller. 1994. Field scale testing of a hyperfiltration unit for removal of creosote and pentachlorophenol from ground water: Chemical and biological assessment. Archives of Environmental Contamination and Toxicology 26 (3):309–19. doi:10.1007/BF00203557.
  • Moghadam, A. V., A. Iranbakhsh, S. Saadatmand, M. Ebadi, and Z. O. Ardebili. 2022. New insights into the transcriptional, epigenetic, and physiological responses to zinc oxide nanoparticles in Datura stramonium potential species for phytoremediation. Journal of Plant Growth Regulation 41 (1):271–81. doi:10.1007/s00344-021-10305-6.
  • Nemat Alla, M., and N. M. Hassan. 2008. Recognition, implication and management of plant resistance to herbicides. American Journal of Plant Physiology 3 (2):50–66. doi:10.3923/ajpp.2008.50.66.
  • Rodriguez-Hernandez, M. C., R. G. De la-Cruz, E. Leyva, and G. Navarro-Tovar. 2017. Typha latifolia as potential phytoremediator of 2,4-dichlorophenol: Analysis of tolerance, uptake and possible transformation processes. Chemosphere 173:190–8. doi:10.1016/j.chemosphere.2016.12.043.
  • Saghi, A., M. H. Rashed Mohassel, M. Parsa, and H. Hammami. 2016. Phytoremediation of lead-contaminated soil by Sinapis arvensis and Rapistrum rugosum. International Journal of Phytoremediation 18 (4):387–92. doi:10.1080/15226514.2015.1109607.
  • Schröder, P., D. Daubner, H. Maier, J. Neustifter, and R. Debus. 2008. Phytoremediation of organic xenobiotics - Glutathione dependent detoxification in Phragmites plants from European treatment sites . Bioresource Technology 99 (15):7183–91. doi:10.1016/j.biortech.2007.12.081.
  • Shirkhani, Z., A. C. Rad, and F. Mohsenzadeh. 2021. Improving Cd‐phytoremediation ability of Datura stramonium L. by chitosan and chitosan nanoparticles. Biologia 76 (8):2161–71. doi:10.1007/s11756-021-00758-1.
  • Soni, P., A. A. Siddiqui, J. Dwivedi, and V. Soni. 2012. Pharmacological properties of Datura stramonium L. as a potential medicinal tree: An overview. Asian Pacific Journal of Tropical Biomedicine 2 (12):1002–8. doi:10.1016/S2221-1691(13)60014-3.
  • Talano, M. A., D. C. Busso, C. E. Paisio, P. S. Gonzalez, S. A. Purro, M. I. Medina, and E. Agostini. 2012. Phytoremediation of 2,4-dichlorophenol using wild type and transgenic tobacco plants. Environmental Science and Pollution Research International 19 (6):2202–11. doi:10.1007/s11356-011-0724-9.
  • USEPA. 1980. Ambient water quality criteria for 2,4-dichlorophenol. National Technical Information Service. Office of Water Regulations and Standards Criteria and Standards Division Washington DC 20460, EPA 440/5-80-042.
  • Wang, Y., J. X. Zhang, H. J. Ren, Y. Wang, H. Y. Pan, and L. Y. Zhang. 2015. Phytoremediation potentiality of garlic roots for 2,4-dichlorophenol removal from aqueous solutions. Applied Microbiology and Biotechnology 99 (8):3629–37. doi:10.1007/s00253-014-6277-3.
  • Webb, S. R., and J. C. Hall. 1995. Auxinic herbicide-resistant and-susceptible wild mustard (Sinapis arvensis L.) biotypes: Effect of auxinic herbicides on seedling growth and auxin-binding activity. Applied Microbiology and Biotechnology 52 (2):137–48.
  • Yang, S., R. S. Wu, and R. Y. Kong. 2002. Biodegradation and enzymatic responses in the marine diatom Skeletonema costatum upon exposure to 2,4-dichlorophenol. Aquatic Toxicology (Amsterdam, Netherlands) 59 (3–4):191–e200. doi:10.1016/S0166-445X(01)00252-1.
  • Yang, X. Q., and Y. L. Zhang. 2015. Characterization of glutathione S-transferases from Sus scrofa, Cydia pomonella and Triticum aestivum: Their responses to cantharidin. Enzyme and Microbial Technology 69:1–9. doi:10.1016/j.enzmictec.2014.11.003.
  • Zhang, J. J., and H. Yang. 2021. Metabolism and detoxification of pesticides in plants. Science of the Total Environment 790:148034. doi:10.1016/j.scitotenv.2021.148034.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.