180
Views
3
CrossRef citations to date
0
Altmetric
Bioanalytical

Surface Interactions Studies of Novel Two-Dimensional Molybdenum Disulfide with Gram-Negative and Gram-Positive Bacteria

, , , , , ORCID Icon & show all
Pages 357-371 | Received 15 Dec 2021, Accepted 21 Apr 2022, Published online: 11 May 2022

References

  • Alimohammadi, F., Gh, M. Sharifian, N. H. Attanayake, A. C. Thenuwara, Y. Gogotsi, B. Anasori, and D. R. Strongin. 2018. Antimicrobial properties of 2D MnO2 and MoS2 nanomaterials vertically aligned on graphene materials and Ti3C2 MXene. Langmuir : The ACS Journal of Surfaces and Colloids 34 (24):7192–200. doi:10.1021/acs.langmuir.8b00262.
  • Aliofkhazraei, M. N. Ali, W. I. Milne, C. S. Ozkan, S. Mitura, and J. L. Gervasoni. 2016. Graphene science handbook: Applications and industrialization. Boca Raton, FL: CRC Press. doi:10.1201/b19488.
  • An, Y. H., and R. J. Friedman. 1998. Concise review of mechanisms of bacterial adhesion to biomaterial surfaces. Journal of Biomedical Materials Research 43 (3):338–48. doi:10.1002/(SICI)1097-4636(199823)43:3<338::AID-JBM16>3.0.CO;2-B.
  • Backes, C., T. M. Higgins, A. Kelly, C. Boland, A. Harvey, D. Hanlon, and J. N. Coleman. 2017. Guidelines for exfoliation, characterization and processing of layered materials produced by liquid exfoliation. Chemistry of Materials 29 (1):243–55. doi:10.1021/acs.chemmater.6b03335.
  • Baird, Z. S., P. Uusi-Kyyny, J. P. Pokki, E. Pedegert, and V. Alopaeus. 2019. Vapor pressures, densities, and PC-SAFT parameters for 11 bio-compounds. International Journal of Thermophysics 40 (11):1–36. doi:10.1007/s10765-019-2570-9.
  • Barnes, R. J., R. Molina, J. Xu, P. J. Dobson, and I. P. Thompson. 2013. Comparison of TiO2 and ZnO nanoparticles for photocatalytic degradation of methylene blue and the correlated inactivation of Gram-positive and Gram-negative bacteria. Journal of Nanoparticle Research 15 (2):1–11. doi:10.1007/s11051-013-1432-9.
  • Begum, S., A. Pramanik, K. Gates, Y. Gao, and P. C. Ray. 2019. Antimicrobial peptide-conjugated MoS2-based nanoplatform for multimodal synergistic inactivation of superbugs. ACS Applied Bio Materials 2 (2):769–76. doi:10.1021/acsabm.8b00632.
  • Bourlinos, A. B., V. Georgakilas, R. Zboril, T. A. Steriotis, and A. K. Stubos. 2009. Liquid-phase exfoliation of graphite towards solubilized graphenes. Small (Weinheim an Der Bergstrasse, Germany) 5 (16):1841–5. doi:10.1002/smll.200900242.
  • Brown, S., J. P. Santa Maria, Jr, and S. Walker. 2013. Wall teichoic acids of gram-positive bacteria. Annual Review of Microbiology 67:313–36.
  • Brown, L., J. M. Wolf, R. Prados-Rosales, and A. Casadevall. 2015. Through the wall: Extracellular vesicles in Gram-positive bacteria, mycobacteria and fungi. Nature Reviews. Microbiology 13 (10):620–30. doi:10.1038/nrmicro3480.
  • Chou, S. S., B. Kaehr, J. Kim, B. M. Foley, M. De, P. E. Hopkins, J. Huang, C. J. Brinker, and V. P. Dravid. 2013. Chemically exfoliated MoS2 as near-infrared photothermal agents. Angewandte Chemie (International ed. in English) 52 (15):4160–4. doi:10.1002/anie.201209229.
  • Coleman, J. N., M. Lotya, A. O'Neill, S. D. Bergin, P. J. King, U. Khan, K. Young, A. Gaucher, S. De, R. J. Smith, et al. 2011. Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science (New York, N.Y.) 331 (6017):568–71. doi:10.1126/science.1194975.
  • Farahat, M., T. Hirajima, K. Sasaki, and K. Doi. 2009. Adhesion of Escherichia coli onto quartz, hematite and corundum: Extended DLVO theory and flotation behavior. Colloids and Surfaces B: Biointerfaces 74 (1):140–9. doi:10.1016/j.colsurfb.2009.07.009.
  • Forsberg, V., R. Zhang, J. Bäckström, C. Dahlström, B. Andres, M. Norgren, M. Andersson, M. Hummelgård, and H. Olin. 2016. Exfoliated MoS2 in water without additives. PloS One 11 (4):e0154522.
  • Frank, C., D. Werber, J. P. Cramer, M. Askar, M. Faber, M. an der Heiden, H. Bernard, A. Fruth, R. Prager, A. Spode, et al. 2011. Epidemic profile of Shiga-toxin-producing Escherichia coli O104:H4 outbreak in Germany. The New England Journal of Medicine 365 (19):1771–80. doi:10.1056/NEJMoa1106483.
  • Frirdich, E., and C. Whitfield. 2005. Lipopolysaccharide inner core oligosaccharide structure and outer membrane stability in human pathogens belonging to the Enterobacteriaceae. Journal of Endotoxin Research 11 (3):133–44.
  • Geim, A. K, and K. S. Novoselov. 2010. The rise of graphene. In Edited By: Peter Rodgers, Nanoscience and technology: A collection of reviews from nature journals, 11–9. Singapore: Nature Publishing Group.
  • Georgopoulou, M. P., V. I. Syngouna, and C. V. Chrysikopoulos. 2020. Influence of graphene oxide nanoparticles on the transport and cotransport of biocolloids in saturated porous media. Colloids and Surfaces. B, Biointerfaces 189 (110841):110841.
  • Goenka, S., V. Sant, and S. Sant. 2014. Graphene-based nanomaterials for drug delivery and tissue engineering. Journal of Controlled Release : Official Journal of the Controlled Release Society 173:75–88.
  • Gupta, S., E. Heintzman, and J. Jasinski. 2014. Secondary electron intensity contrast imaging and friction properties of micromechanically cleaved graphene layers on insulating substrates. Journal of Electronic Materials 43 (9):3458–69. doi:10.1007/s11664-014-3277-0.
  • Hernandez, Y., V. Nicolosi, M. Lotya, F. M. Blighe, Z. Sun, S. De, I. T. McGovern, B. Holland, M. Byrne, Y. K. Gun'Ko, et al. 2008. High-yield production of graphene by liquid-phase exfoliation of graphite. Nature Nanotechnology 3 (9):563–8. doi:10.1038/nnano.2008.215.
  • Ho, T. D., and M. K. Waldor. 2007. Enterohemorrhagic Escherichia coli O157:H7 gal mutants are sensitive to bacteriophage P1 and defective in intestinal colonization. Infection and Immunity 75 (4):1661–6. doi:10.1128/IAI.01342-06.
  • Hwang, G., I. S. Ahn, B. J. Mhin, and J. Y. Kim. 2012. Adhesion of nano-sized particles to the surface of bacteria: Mechanistic study with the extended DLVO theory. Colloids and Surfaces B: Biointerfaces 97:138–44. doi:10.1016/j.colsurfb.2012.04.031.
  • Israelachvili, J. 2011. Intermolecular and surface forces, 253–89. Amsterdam: Academic Press, Elsevier. doi:10.1016/C2009-0-21560-1.
  • Liu, T., and Z. Liu. 2018. 2D MoS2 nanostructures for biomedical applications. Advanced Healthcare Materials 7 (8):1701158. doi:10.1002/adhm.201701158.
  • Liu, T., S. Shi, C. Liang, S. Shen, L. Cheng, C. Wang, X. Song, S. Goel, T. E. Barnhart, W. Cai, et al. 2015. Iron oxide decorated MoS2 nanosheets with double PEGylation for chelator-free radiolabeling and multimodal imaging guided photothermal therapy. ACS Nano 9 (1):950–60. doi:10.1021/nn506757x.
  • Liu, T., C. Wang, W. Cui, H. Gong, C. Liang, X. Shi, Z. Li, B. Sun, and Z. Liu. 2014. Combined photothermal and photodynamic therapy delivered by PEGylated MoS2 nanosheets. Nanoscale 6 (19):11219–25. doi:10.1039/c4nr03753g.
  • Liu, M., H. Zhu, Y. Wang, C. Sevencan, and B. L. Li. 2021. Functionalized MoS2-based nanomaterials for cancer phototherapy and other biomedical applications. ACS Materials Letters 3 (5):462–96. doi:10.1021/acsmaterialslett.1c00073.
  • Lovering, A. L., S. S. Safadi, and N. C. J. Strynadka. 2012. Structural perspective of peptidoglycan biosynthesis and assembly. Annual Review of Biochemistry 81:451–78.
  • Maurer, J. J., D. Schmidt, P. Petrosko, S. Sanchez, L. Bolton, and M. D. Lee. 1999. Development of primers to O-antigen biosynthesis genes for specific detection of Escherichia coli O157 by PCR. Applied and Environmental Microbiology 65 (7):2954–60. doi:10.1128/AEM.65.7.2954-2960.1999.
  • Mohona, T. M., A. Gupta, A. Masud, S. C. Chien, L. C. Lin, P. C. Nalam, and N. Aich. 2019. Aggregation behavior of inorganic 2D nanomaterials beyond graphene: Insights from molecular modeling and modified DLVO theory. Environmental Science & Technology 53 (8):4161–72. doi:10.1021/acs.est.8b05180.
  • Nicolosi, V., M. Chhowalla, M. G. Kanatzidis, M. S. Strano, and J. N. Coleman. 2013. Liquid exfoliation of layered materials. Science 340 (6139):1226419. doi:10.1126/science.1226419.
  • Novoselov, K. S., V. I. Fal'ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim. 2012. A roadmap for graphene. Nature 490 (7419):192–200.
  • Oh, J. K., Y. Yegin, F. Yang, M. Zhang, J. Li, S. Huang, S. V. Verkhoturov, E. A. Schweikert, K. Perez-Lewis, E. A. Scholar, et al. 2018. The influence of surface chemistry on the kinetics and thermodynamics of bacterial adhesion. Scientific Reports 8 (1):1–13. doi:10.1038/s41598-018-35343-1.
  • Ohshima, H, and K. Makino. 2014. Colloid and interface science in pharmaceutical research and development, 261–83. Amsterdam: Elsevier.
  • Ou, J. Z., A. F. Chrimes, Y. Wang, S. Tang, M. S. Strano, and K. Kalantar-zadeh. 2014. Ion-driven photoluminescence modulation of quasi-two-dimensional MoS2 nanoflakes for applications in biological systems. Nano Letters 14 (2):857–63. doi:10.1021/nl4042356.
  • Pajerski, W., D. Ochonska, M. Brzychczy-Wloch, P. Indyka, M. Jarosz, M. Golda-Cepa, Z. Sojka, and A. Kotarba. 2019. Attachment efficiency of gold nanoparticles by Gram-positive and Gram-negative bacterial strains governed by surface charges. Journal of Nanoparticle Research 21 (8):1–12. doi:10.1007/s11051-019-4617-z.
  • Ramstedt, M., R. Nakao, S. N. Wai, B. E. Uhlin, and J. F. Boily. 2011. Monitoring surface chemical changes in the bacterial cell wall: Multivariate analysis of cryo-x-ray photoelectron spectroscopy data. The Journal of Biological Chemistry 286 (14):12389–96. doi:10.1074/jbc.M110.209536.
  • Rodriguez, C. L. C., P. A. R. Munoz, K. Z. Donato, L. Seixas, R. K. Donato, and G. J. M. Fechine. 2020. Understanding the unorthodox stabilization of liquid phase exfoliated molybdenum disulfide (MoS2) in water medium. Physical Chemistry Chemical Physics : PCCP 22 (3):1457–65. doi:10.1039/c9cp06422b.
  • Romaniuk, J. A. H., and L. Cegelski. 2015. Bacterial cell wall composition and the influence of antibiotics by cell-wall and whole-cell NMR. Philosophical Transactions of the Royal Society B: Biological Sciences 370 (1679):20150024. doi:10.1098/rstb.2015.0024.
  • Salavagione, H. J., J. Sherwood, M. De bruyn, V. L. Budarin, G. J. Ellis, J. H. Clark, and P. S. Shuttleworth. 2017. Identification of high performance solvents for the sustainable processing of graphene. Green Chemistry 19 (11):2550–60. doi:10.1039/C7GC00112F.
  • Santos, J., M. Moschetta, J. Rodrigues, P. Alpuim, and A. Capasso. 2021. Interactions between 2D materials and living matter: A review on graphene and hexagonal boron nitride coatings. Frontiers in Bioengineering and Biotechnology 9: 1–25. Article 612669. doi:10.3389/fbioe.2021.612669.
  • Sherwood, J., M. De bruyn, A. Constantinou, L. Moity, C. R. McElroy, T. J. Farmer, T. Duncan, W. Raverty, A. J. Hunt, and J. H. Clark. 2014. Dihydrolevoglucosenone (Cyrene) as a bio-based alternative for dipolar aprotic solvents. Chemical Communications (Cambridge, England) 50 (68):9650–2. doi:10.1039/c4cc04133j.
  • Sigma aldrich. 2019. The future of solvents: Bio renewable. https://www.sigmaaldrich.com/US/en/deepweb/assets/sigmaaldrich/marketing/global/documents/273/710/greener-solvents-br-ms.pdf. 10-03-2022.
  • Singh, M., C. Zannella, V. Folliero, R. D. Girolamo, F. Bajardi, A. Chianese, L. Altucci, A. Damasco, M. R. Del Sorbo, C. Imperatore, et al. 2020. Combating actions of green 2D-materials on gram positive and negative bacteria and enveloped viruses. Frontiers in Bioengineering and Biotechnology 8: 1–26. Article 569967. doi:10.3389/fbioe.2020.569967.
  • Syngouna, V. I., and C. V. Chrysikopoulos. 2017. Inactivation of MS2 bacteriophage by titanium dioxide nanoparticles in the presence of quartz sand with and without ambient light. Journal of Colloid and Interface Science 497:117–25.
  • Syngouna, V. I., and C. V. Chrysikopoulos. 2019. Bacteriophage MS2 and titanium dioxide heteroaggregation: Effects of ambient light and the presence of quartz sand. Colloids and Surfaces. B, Biointerfaces 180:281–8.
  • Syngouna, V. I., K. I. Kourtaki, M. P. Georgopoulou, and C. V. Chrysikopoulos. 2022. The role of nanoparticles (titanium dioxide, graphene oxide) on the inactivation of co-existing bacteria in the presence and absence of quartz sand. Environmental Science and Pollution Research International 29 (13):19199–211. doi:10.1007/s11356-021-17086-1.
  • Tang, K., L. Wang, H. Geng, J. Qiu, H. Cao, and X. Liu. 2020. Molybdenum disulfide (MoS2) nanosheets vertically coated on titanium for disinfection in the dark. Arabian Journal of Chemistry 13 (1):1612–23. doi:10.1016/j.arabjc.2017.12.013.
  • Tkachev, S., M. Monteiro, J. Santos, E. Placidi, M. Ben Hassine, P. Marques, P. Ferreira, P. Alpuim, and A. Capasso. 2021. Environmentally friendly graphene inks for touch screen sensors. Advanced Functional Materials 31 (33):2103287. doi:10.1002/adfm.202103287.
  • Tuson, H. H., and D. B. Weibel. 2013. Bacteria-surface interactions. Soft Matter 9 (18):4368–80. doi:10.1039/C3SM27705D.
  • Varrla, E., C. Backes, K. R. Paton, A. Harvey, Z. Gholamvand, J. McCauley, and J. N. Coleman. 2015. Large-scale production of size-controlled MoS2 nanosheets by shear exfoliation. Chemistry of Materials 27 (3):1129–39. doi:10.1021/cm5044864.
  • Wang, S., X. Li, Y. Chen, X. Cai, H. Yao, W. Gao, Y. Zheng, X. An, J. Shi, and H. Chen. 2015. A facile one-pot synthesis of a two-dimensional MoS2 /Bi2S3 Composite Theranostic Nanosystem for Multi-Modality Tumor Imaging and Therapy. Advanced Materials (Deerfield Beach, Fla.) 27 (17):2775–82. doi:10.1002/adma.201500870.
  • Xu, F. 2013. Large scale manufacturing of WS2 nanomaterials and their application in polymer nanocomposites. Ph.D. thesis. University of Exeter.
  • Yadav, V., S. Roy, P. Singh, Z. Khan, and A. Jaiswal. 2019. 2D MoS2-based nanomaterials for therapeutic, bioimaging, and biosensing applications. Small 15 (1):1803706. doi:10.1002/smll.201803706.
  • Yin, W., L. Yan, J. Yu, G. Tian, L. Zhou, X. Zheng, X. Zhang, Y. Yong, J. Li, Z. Gu, et al. 2014. High-throughput synthesis of single-layer MoS2 nanosheets as a near-infrared photothermal-triggered drug delivery for effective cancer therapy. ACS Nano 8 (7):6922–33. doi:10.1021/nn501647j.
  • Yu, J., W. Yin, X. Zheng, G. Tian, X. Zhang, T. Bao, X. Dong, Z. Wang, Z. Gu, X. Ma, et al. 2015. Smart MoS2/Fe3O4 nanotheranostic for magnetically targeted photothermal therapy guided by magnetic resonance/photoacoustic imaging. Theranostics 5 (9):931–45. doi:10.7150/thno.11802.
  • Zhao, Y., Y. Jia, J. Xu, L. Han, F. He, and X. Jiang. 2021. The antibacterial activities of MoS2 nanosheets towards multi-drug resistant bacteria. Chemical Communications (Cambridge, England) 57 (24):2998–3001. doi:10.1039/d1cc00327e.
  • Zhou, W., X. Gao, D. Liu, and X. Chen. 2015. Gold nanoparticles for in vitro diagnostics. Chemical Reviews 115 (19):10575–636. doi:10.1021/acs.chemrev.5b00100.
  • Zhu, C., Z. Zeng, H. Li, F. Li, C. Fan, and H. Zhang. 2013. Single-layer MoS2-based nanoprobes for homogeneous detection of biomolecules. Journal of the American Chemical Society 135 (16):5998–6001. doi:10.1021/ja4019572.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.