202
Views
0
CrossRef citations to date
0
Altmetric
Chromatography

Separation of anilines by a covalent triazine-triphenyl polymer as a stationary phase for their normal-phase and reverse-phase determination by high-performance liquid chromatography (HPLC)

, , & ORCID Icon
Pages 2764-2775 | Received 02 Feb 2022, Accepted 25 Apr 2022, Published online: 05 May 2022

References

  • Bhadra, M., S. Kandambeth, M. K. Sahoo, M. Addicoat, E. Balaraman, and R. Banerjee. 2019. Triazine functionalized porous covalent organic framework for photo-organocatalytic E-Z isomerization of olefins. Journal of the American Chemical Society 141 (15):6152–6. doi:10.1021/jacs.9b01891.
  • Bhunia, A., S. Dey, M. Bous, C. Zhang, W. von Rybinski, and C. Janiak. 2015. High adsorptive properties of covalent triazine-based frameworks (CTFs) for surfactants from aqueous solution. Chemical Communications (Cambridge, England) 51 (3):484–6. doi:10.1039/c4cc06393g.
  • Cai, H., Y.-L. Huang, and D. Li. 2019. Biological metal–organic frameworks: Structures, host–guest chemistry and bio-applications. Coordination Chemistry Reviews 378:207–21. doi:10.1016/j.ccr.2017.12.003.
  • Chen, J., Y. Huang, X. Wei, X. Lei, L. Zhao, M. Guan, and H. Qiu. 2019. Covalent organic nanospheres: Facile preparation and application in high-resolution gas chromatographic separation. Chemical Communications (Cambridge, England) 55 (73):10908–11. doi:10.1039/c9cc05307g.
  • Chen, L. X., J. Gao, Q. Wu, H. Li, S. Q. Dong, X. F. Shi, and L. Zhao. 2019. Preparation and performance of a novel multi-mode COF-300@SiO2 chromatographic stationary phase. European Polymer Journal 116:9–19. doi:10.1016/j.eurpolymj.2019.04.002.
  • Chen, Y., W. Zhang, Y. Zhang, Z. Deng, W. Zhao, H. Du, X. Ma, D. Yin, F. Xie, Y. Chen, et al. 2018. In situ preparation of core-shell magnetic porous aromatic framework nanoparticles for mixed-mode solid-phase extraction of trace multitarget analytes. Journal of Chromatography A 1556:1–9. doi:10.1016/j.chroma.2018.04.039.
  • Gao, C., H. Zhu, J. Chen, and H. Qiu. 2017. Facile synthesis of enzyme functional metal-organic framework for colorimetric detecting H2O2 and ascorbic acid. Chinese Chemical Letters 28 (5):1006–12. doi:10.1016/j.cclet.2017.02.011.
  • Guo, J., L. Yu, and H. Yue. 2019. Bulk fabrication of porous organic framework polymers on flexible nanofibers and their application for water purification. Reactive and Functional Polymers 135:58–64. doi:10.1016/j.reactfunctpolym.2018.12.007.
  • Hawes, C. S., Y. Nolvachai, C. Kulsing, G. P. Knowles, A. L. Chaffee, P. J. Marriott, S. R. Batten, and D. R. Turner. 2014. Metal-organic frameworks as stationary phases for mixed-mode separation applications. Chemical Communications (Cambridge, England) 50 (28):3735–7. doi:10.1039/c4cc00933a.
  • Jena, H. S., C. Krishnaraj, G. Wang, K. Leus, J. Schmidt, N. Chaoui, and P. Van Der Voort. 2018. Acetylacetone covalent triazine framework: An efficient carbon capture and storage material and a highly stable heterogeneous catalyst. Chemistry of Materials 30 (12):4102–11. doi:10.1021/acs.chemmater.8b01409.
  • Kuang, X., Y. Ma, H. Su, J. Zhang, Y. B. Dong, and B. Tang. 2014. High-performance liquid chromatographic enantioseparation of racemic drugs based on homochiral metal-organic framework. Analytical Chemistry 86 (2):1277–81. doi:10.1021/ac403674p.
  • Kuhn, P., M. Antonietti, and A. Thomas. 2008. Porous, covalent triazine-based frameworks prepared by ionothermal synthesis. Angewandte Chemie (International ed. in English) 47 (18):3450–3. doi:10.1002/anie.200705710.
  • Lim, H., M. C. Cha, and J. Y. Chang. 2012. Preparation of microporous polymers based on 1,3,5-triazine units showing high CO2 adsorption capacity. Macromolecular Chemistry and Physics 213 (13):1385–90. doi:10.1002/macp.201200195.
  • Liu, M., L. Guo, S. Jin, and B. Tan. 2019. Covalent triazine frameworks: Synthesis and applications. Journal of Materials Chemistry A 7 (10):5153–72. doi:10.1039/C8TA12442F.
  • Liu, M., Q. Huang, S. Wang, Z. Li, B. Li, S. Jin, and B. Tan. 2018. Crystalline covalent triazine frameworks by in situ oxidation of alcohols to aldehyde monomers. Angewandte Chemie (International ed. in English) 57 (37):11968–72. doi:10.1002/anie.201806664.
  • Liu, M., K. Jiang, X. Ding, S. Wang, C. Zhang, J. Liu, Z. Zhan, G. Cheng, B. Li, H. Chen, et al. 2019. Controlling monomer feeding rate to achieve highly crystalline covalent triazine frameworks. Advanced Materials 31 (19):1807865. doi:10.1002/adma.201807865.
  • Lyu, H., C. S. Diercks, C. Zhu, and O. M. Yaghi. 2019. Porous crystalline olefin-linked covalent organic frameworks. Journal of the American Chemical Society 141 (17):6848–52. doi:10.1021/jacs.9b02848.
  • Mondal, S., and N. Das. 2015. Triptycene based 1,2,3-triazole linked network polymers (TNPs): small gas storage and selective CO2 capture. Journal of Materials Chemistry A 3 (46):23577–86. doi:10.1039/C5TA06939D.
  • Mukherjee, S., M. Das, A. Manna, R. Krishna, and S. Das. 2019. Newly designed 1,2,3-triazole functionalized covalent triazine frameworks with exceptionally high uptake capacity for both CO2 and H2. Journal of Materials Chemistry A 7 (3):1055–68. doi:10.1039/C8TA08185A.
  • Puthiaraj, P., S.-M. Cho, Y.-R. Lee, and W.-S. Ahn. 2015. Microporous covalent triazine polymers: Efficient Friedel–Crafts synthesis and adsorption/storage of CO2 and CH4. Journal of Materials Chemistry A 3 (13):6792–7. doi:10.1039/C5TA00665A.
  • Puthiaraj, P., Y.-R. Lee, S. Zhang, and W.-S. Ahn. 2016. Triazine-based covalent organic polymers: Design, synthesis and applications in heterogeneous catalysis. Journal of Materials Chemistry A 4 (42):16288–311. doi:10.1039/C6TA06089G.
  • Qiao, L., X. Zhou, X. Li, W. Du, A. Yu, S. Zhang, and Y. Wu. 2017. Synthesis and performance of chiral ferrocene modified silica gel for mixed-mode chromatography. Talanta 163:94–101. doi:10.1016/j.talanta.2016.10.090.
  • Qiao, L., X. Zhou, Y. Zhang, A. Yu, K. Hu, S. Zhang, and Y. Wu. 2016. 4-Chloro-6-pyrimidinylferrocene modified silica gel: A novel multiple-function stationary phase for mixed-mode chromatography. Talanta 153:8–16. doi:10.1016/j.talanta.2016.02.055.
  • Ren, J. Y., X. L. Wang, X. L. Li, M. L. Wang, R. S. Zhao, and J. M. Lin. 2018. Magnetic covalent triazine-based frameworks as magnetic solid-phase extraction adsorbents for sensitive determination of perfluorinated compounds in environmental water samples. Analytical and Bioanalytical Chemistry 410 (6):1657–65. doi:10.1007/s00216-017-0845-1.
  • Safaei, M., M. M. Foroughi, N. Ebrahimpoor, S. Jahani, A. Omidi, and M. Khatami. 2019. A review on metal-organic frameworks: Synthesis and applications. Trends in Analytical Chemistry 118:401–25. doi:10.1016/j.trac.2019.06.007.
  • Shahvar, A., R. Soltani, M. Saraji, M. Dinari, and S. Alijani. 2018. Covalent triazine-based framework for micro solid-phase extraction of parabens. Journal of Chromatography. A 1565:48–56. doi:10.1016/j.chroma.2018.06.033.
  • Sliwka-Kaszyńska, M., K. Jaszczołt, D. Witt, and J. Rachoń. 2004. High-performance liquid chromatography of di- and trisubstituted aromatic positional isomers on 1,3-alternate 25,27-dipropoxy-26,28-bis-[3-propyloxy]-calix[4]arene-bonded silica gel stationary phase. Journal of Chromatography. A 1055 (1-2):21–8. doi:10.1016/j.chroma.2004.08.006.
  • Soltani, R., A. Shahvar, H. Gordan, M. Dinari, and M. Saraji. 2019. Covalent triazine framework-decorated phenyl-functionalised SBA-15: Its synthesis and application as a novel nanoporous adsorbent. New Journal of Chemistry 43 (33):13058–67. doi:10.1039/C9NJ01915D.
  • Thankamony, R. L., X. Li, S. K. Das, M. M. Ostwal, and Z. Lai. 2019. Porous covalent triazine piperazine polymer (CTPP)/PEBAX mixed matrix membranes for CO2/N2 and CO2/CH4 separations. Journal of Membrane Science 591:117348. doi:10.1016/j.memsci.2019.117348.
  • Van der Perre, S., A. Liekens, B. Bueken, D. E. De Vos, G. V. Baron, and J. F. Denayer. 2016. Separation properties of the MIL-125(Ti) metal-organic framework in high-performance liquid chromatography revealing cis/trans selectivity. Journal of Chromatography A 1469:68–76. doi:10.1016/j.chroma.2016.09.057.
  • Wang, G., M. Jiang, G. Ji, Z. Sun, C. Li, L. Yan, and Y. Ding. 2020. Bifunctional heterogeneous Ru/POP catalyst embedded with alkali for the N-formylation of amine and CO2. ACS Sustainable Chemistry & Engineering 8 (14):5576–83. doi:10.1021/acssuschemeng.9b07471.
  • Wei, Z., H. Ren, S. Wang, H. Qiu, X. Liu, and S. Jiang. 2013. Facile preparation of well dispersed uniform, porous carbon microspheres and their use as a new chromatographic adsorbent. Materials Letters 105:144–7. doi:10.1016/j.matlet.2013.04.078.
  • Yan, Z., M. He, B. Chen, B. Gui, C. Wang, and B. Hu. 2017. Magnetic covalent triazine framework for rapid extraction of phthalate esters in plastic packaging materials followed by gas chromatography-flame ionization detection. Journal of Chromatography A 1525:32–41. doi:10.1016/j.chroma.2017.10.025.
  • Yang, B., H. Liu, J. Chen, M. Guan, and H. Qiu. 2016. Preparation and evaluation of 2-methylimidazolium-functionalized silica as a mixed-mode stationary phase for hydrophilic interaction and anion-exchange chromatography. Journal of Chromatography A 1468:79–85. doi:10.1016/j.chroma.2016.09.021.
  • Yang, C. X., S. S. Liu, H. F. Wang, S. W. Wang, and X. P. Yan. 2012. High-performance liquid chromatographic separation of position isomers using metal-organic framework MIL-53(Al) as the stationary phase. The Analyst 137 (1):133–9. doi:10.1039/c1an15600d.
  • Yang, C. X., and X. P. Yan. 2011. Metal-organic framework MIL-101(Cr) for high-performance liquid chromatographic separation of substituted aromatics. Analytical Chemistry 83 (18):7144–50. doi:10.1021/ac201517c.
  • Yang, F., C. X. Yang, and X. P. Yan. 2015. Post-synthetic modification of MIL-101(Cr) with pyridine for high-performance liquid chromatographic separation of tocopherols. Talanta 137:136–42. doi:10.1016/j.talanta.2015.01.022.
  • Yu, C., M. Liang, X. Yue, K. Tian, D. Liu, and X. Qiao. 2020. Superhydrophobic conjugated microporous polymers grafted silica microspheres for liquid chromatographic separation. Journal of Chromatography A 1631461539. doi:10.1016/j.chroma.2020.:.
  • Yu, S. Y., J. Mahmood, H. J. Noh, J. M. Seo, S. M. Jung, S. H. Shin, Y. K. Im, I. Y. Jeon, and J. B. Baek. 2018. Direct synthesis of a covalent triazine-based framework from aromatic amides. Angewandte Chemie (International ed. in English) 57 (28):8438–42. doi:10.1002/anie.201801128.
  • Zhao, W., H. Zuo, Y. Guo, K. Liu, S. Wang, L. He, X. Jiang, G. Xiang, and S. Zhang. 2019. Porous covalent triazine-terphenyl polymer as hydrophilic-lipophilic balanced sorbent for solid phase extraction of tetracyclines in animal derived foods. Talanta 201:426–32. doi:10.1016/j.talanta.2019.04.010.
  • Zhong, C., B. Chen, M. He, and B. Hu. 2017. Covalent triazine framework-1 as adsorbent for inline solid phase extraction-high performance liquid chromatographic analysis of trace nitroimidazoles in porcine liver and environmental waters. Journal of Chromatography A 1483:40–7. doi:10.1016/j.chroma.2016.12.073.
  • Zhu, X., C. Tian, S. M. Mahurin, S. H. Chai, C. Wang, S. Brown, G. M. Veith, H. Luo, H. Liu, and S. Dai. 2012. A superacid-catalyzed synthesis of porous membranes based on triazine frameworks for CO2 separation. Journal of the American Chemical Society 134 (25):10478–84. doi:10.1021/ja304879c.
  • Zhu, Y., X. Chen, Y. Cao, W. Peng, Y. Li, G. Zhang, F. Zhang, and X. Fan. 2019. Reversible intercalation and exfoliation of layered covalent triazine frameworks for enhanced lithium ion storage. Chemical Communications (Cambridge, England) 55 (10):1434–7. doi:10.1039/c8cc10262g.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.