206
Views
1
CrossRef citations to date
0
Altmetric
Environmental Analysis

Isolation of Methylene Blue from Aqueous Solution Using a Fraxinus Excelsior L. (Oleaceae) Based Biosorbent: Isotherm, Kinetics, and Thermodynamics

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 422-432 | Received 09 Feb 2022, Accepted 29 Apr 2022, Published online: 13 May 2022

References

  • Akkaya, G., and F. Güzel. 2014. Application of Some Domestic Wastes as New Low-Cost Biosorbents for Removal of Methylene Blue: Kinetic and Equilibrium Studies. Chemical Engineering Communications 201 (4):557–78. doi:10.1080/00986445.2013.780166.
  • Alghamdi, W. M., and I. E. Mannoubi. 2021. Investigation of Seeds and Peels of Citrullus colocynthis as Efficient Natural Adsorbent for Methylene Blue Dye. Processes 9 (8):1279. doi:10.3390/pr9081279.
  • Alhujaily, A., H. Yu, X. Zhang, and F. Ma. 2020. Adsorptive removal of anionic dyes from aqueous solutions using spent mushroom waste. Applied Water Science 10 (7):183. doi:10.1007/s13201-020-01268-2.
  • Amode, J. O., J. H. Santos, Z. Md. Alam, A. H. Mirza, and C. C. Mei. 2016. Adsorption of methylene blue from aqueous solution using untreated and treated (Metroxylon spp.) waste adsorbent: Equilibrium and kinetics studies. International Journal of Industrial Chemistry 7 (3):333–45. doi:10.1007/s40090-016-0085-9.
  • Arora, C., S. Soni, S. Sahu, J. Mittal, P. Kumar, and P. K. Bajpai. 2019. Iron based metal organic framework for efficient removal of methylene blue dye from industrial waste. Journal of Molecular Liquids 284:343–52. doi:10.1016/j.molliq.2019.04.012.
  • Bardhan, M., T. M. Novera, M. Tabassum, M. A. Islam, A. H. Jawad, and M. A. Islam. 2020. Adsorption of methylene blue onto betel nut husk-based activated carbon prepared by sodium hydroxide activation process. Water Science and Technology: A Journal of the International Association on Water Pollution Research 82 (9):1932–49. doi:10.2166/wst.2020.451.
  • Behloul, S., A.-E. Hamitouche, M. Haffas, A. Boudjemaa, S. Benammar, M. Sehailia, T. Meziane, and K. Bachari. 2018. Removal of methyl violet dye by a low-cost waste (Ajuga Pseudo-Iva): Kinetic and equilibrium isotherm study. The Canadian Journal of Chemical Engineering 96 (10):2282–91. doi:10.1002/cjce.23313.
  • El Atouani, S., Z. Belattmania, A. Reani, S. Tahiri, A. Aarfane, F. Bentiss, C. Jama, R. Zrid, and B. Sabour. 2019. Brown Seaweed Sargassum muticum as Low-Cost Biosorbent of Methylene Blue. International Journal of Environmental Research 13 (1):131–42. doi:10.1007/s41742-018-0161-4.
  • Fiaz, R., M. Hafeez, and R. Mahmood. 2019. Ficcus palmata leaves as a low-cost biosorbent for methylene blue: Thermodynamic and kinetic studies. Water Environment Research: A Research Publication of the Water Environment Federation 91 (8):689–99. doi:10.1002/wer.1093.
  • Georgin, J., D. Franco, M. S. Netto, D. Allasia, M. Oliveira, and G. L. Dotto. 2020. Treatment of water containing methylene by biosorption using Brazilian berry seeds (Eugenia uniflora). Environmental Science and Pollution Research International 27 (17):20831–43. doi:10.1007/s11356-020-08496-8.
  • Güllüce, E., E. Aslan, Y. N. Sulanç, and A. Başak. 2020. Biosorption Process Using by Sunflower Straw (Helianthus annuus L.) Biosorbent for Removal Malachite Green Dye from Aqueous Solutions. Anatolian Journal of Biology 1 (2):84–92.
  • Gulluce, E., M. Karadayi, M. Gulluce, G. Karadayi, V. Yildirim, D. Egamberdieva, and B. Alaylar. 2020. Bioremoval of methylene blue from aqueous solutions by Syringa vulgaris L. hull biomass. Environmental Sustainability 3 (3):303–12. doi:10.1007/s42398-020-00122-0.
  • Gunay Gurer, A., K. Aktas, M. Ozkaleli Akcetin, A. Erdem Unsar, and M. Asilturk. 2021. Adsorption Isotherms, Thermodynamics, and Kinetic Modeling of Methylene Blue onto Novel Carbonaceous Adsorbent Derived from Bitter Orange Peels. Water, Air, & Soil Pollution 232 (4):138. doi:10.1007/s11270-021-05090-7.
  • Gupta, S. A., Y. Vishesh, N. Sarvshrestha, A. S. Bhardwaj, P. A. Kumar, N. S. Topare, S. Raut-Jadhav, S. A. Bokil, and A. Khan. 2022. Adsorption isotherm studies of methylene blue using activated carbon of waste fruit peel as an adsorbent. Materials Today: Proceedings 57(4): 1500–1508.
  • Gupta, V. K., A. I. Suhas, and V. K. Saini. 2004. Removal of Rhodamine B, Fast Green, and Methylene Blue from Wastewater Using Red Mud, an Aluminum Industry Waste. Industrial & Engineering Chemistry Research 43 (7):1740–7. doi:10.1021/ie034218g.
  • Hameed, B. H. 2009. Evaluation of papaya seeds as a novel non-conventional low-cost adsorbent for removal of methylene blue. Journal of Hazardous Materials 162 (2-3):939–44. doi:10.1016/j.jhazmat.2008.05.120.
  • Hashem, A. H., E. Saied, and M. S. Hasanin. 2020. Green and ecofriendly bio-removal of methylene blue dye from aqueous solution using biologically activated banana peel waste. Sustainable Chemistry and Pharmacy 18:100333. doi:10.1016/j.scp.2020.100333.
  • Hu, D.-D., J. Lin, Q. Zhang, J.-N. Lu, X.-Y. Wang, Y.-W. Wang, F. Bu, L.-F. Ding, L. Wang, and T. Wu. 2015. Multi-Step Host–Guest Energy Transfer Between Inorganic Chalcogenide-Based Semiconductor Zeolite Material and Organic Dye Molecules. Chemistry of Materials 27 (11):4099–104. doi:10.1021/acs.chemmater.5b01158.
  • Huang, X., X. Bo, Y. Zhao, B. Gao, Y. Wang, S. Sun, Q. Yue, and Q. Li. 2014. Effects of compound bioflocculant on coagulation performance and floc properties for dye removal. Bioresource Technology 165:116–21. doi:10.1016/j.biortech.2014.02.125.
  • Jain, S. N., S. R. Tamboli, D. S. Sutar, S. R. Jadhav, J. V. Marathe, and V. N. Mawal. 2020. Kinetic, equilibrium, thermodynamic, and desorption studies for sequestration of acid dye using waste biomass as sustainable adsorbents. Biomass Conversion and Biorefinery doi: 10.1007/s13399-020-00780-4
  • Kiani Ghaleh sardi, F., M. Behpour, Z. Ramezani, and S. Masoum. 2021. Simultaneous removal of Basic Blue41 and Basic Red46 dyes in binary aqueous systems via activated carbon from palm bio-waste: Optimization by central composite design, equilibrium, kinetic, and thermodynamic studies. Environmental Technology & Innovation 24:102039. doi:10.1016/j.eti.2021.102039.
  • Kumar, M., and R. Tamilarasan. 2013. Modeling studies for the removal of methylene blue from aqueous solution using Acacia fumosa seed shell activated carbon. Journal of Environmental Chemical Engineering 1 (4):1108–16. doi:10.1016/j.jece.2013.08.027.
  • Kushwaha, A. K., N. Gupta, and M. C. Chattopadhyaya. 2014. Removal of cationic methylene blue and malachite green dyes from aqueous solution by waste materials of Daucus carota. Journal of Saudi Chemical Society 18 (3):200–7. doi:10.1016/j.jscs.2011.06.011.
  • Lafi, R., A. ben Fradj, A. Hafiane, and B. H. Hameed. 2014. Coffee waste as potential adsorbent for the removal of basic dyes from aqueous solution. Korean Journal of Chemical Engineering 31 (12):2198–206. doi:10.1007/s11814-014-0171-7.
  • Mohamed, F., M. Shaban, G. Aljohani, and A. M. Ahmed. 2021. Synthesis of novel eco-friendly CaO/C photocatalyst from coffee and eggshell wastes for dye degradation. Journal of Materials Research and Technology 14:3140–9. doi:10.1016/j.jmrt.2021.08.055.
  • Moldovan, A., E. Neag, V. Băbălău-Fuss, O. Cadar, V. Micle, and C. Roman. 2019. Optimized Removal of Methylene Blue from Aqueous Solution using a Commercial Natural Activated Plant-Based Carbon and Taguchi Experimental Design. Analytical Letters 52 (1):150–62. doi:10.1080/00032719.2017.1418879.
  • Mosoarca, G., C. Vancea, S. Popa, M. Gheju, and S. Boran. 2020. Syringa vulgaris leaves powder a novel low-cost adsorbent for methylene blue removal: Isotherms, kinetics, thermodynamic and optimization by Taguchi method. Scientific Reports 10 (1):17676. doi:10.1038/s41598-020-74819-x.
  • Pandey, D., A. Daverey, K. Dutta, V. K. Yata, and K. Arunachalam. 2022. Valorization of waste pine needle biomass into biosorbents for the removal of methylene blue dye from water: Kinetics, equilibrium and thermodynamics study. Environmental Technology & Innovation 25 (102200):102200. doi:10.1016/j.eti.2021.102200.
  • Patriota, S. N., W. Francisco, D. F. Araújo, and D. S. Mulholland. 2020. Adsorption of Copper and Methylene Blue on an Agrowaste of Mauritia Flexuosa. Journal of Environmental Engineering 146 (6):04020039. doi:10.1061/(ASCE)EE.1943-7870.0001702.
  • Raj, A., A. Yadav, A. P. Rawat, A. K. Singh, S. Kumar, A. K. Pandey, R. Sirohi, and A. Pandey. 2021. Kinetic and thermodynamic investigations of sewage sludge biochar in removal of Remazol Brilliant Blue R dye from aqueous solution and evaluation of residual dyes cytotoxicity. Environmental Technology & Innovation 23:101556. doi:10.1016/j.eti.2021.101556.
  • Rehman, R., S. Farooq, and T. Mahmud. 2019. Use of Agro-waste Musa acuminata and Solanum tuberosum peels for economical sorptive removal of Emerald green dye in ecofriendly way. Journal of Cleaner Production 206:819–26. doi:10.1016/j.jclepro.2018.09.226.
  • Saha, P. 2010. Assessment on the Removal of Methylene Blue Dye using Tamarind Fruit Shell as Biosorbent. Water, Air, & Soil Pollution 213 (1-4):287–99. doi:10.1007/s11270-010-0384-2.
  • Sangi, M. R., A. Shahmoradi, J. Zolgharnein, G. H. Azimi, and M. Ghorbandoost. 2008. Removal and recovery of heavy metals from aqueous solution using Ulmus carpinifolia and Fraxinus excelsior tree leaves. Journal of Hazardous Materials 155 (3):513–22. doi:10.1016/j.jhazmat.2007.11.110.
  • Saxena, M., N. Sharma, and R. Saxena. 2020. Highly efficient and rapid removal of a toxic dye: Adsorption kinetics, isotherm, and mechanism studies on functionalized multiwalled carbon nanotubes. Surfaces and Interfaces 21:100639. doi:10.1016/j.surfin.2020.100639.
  • Sayğılı, H., G. Akkaya Sayğılı, and F. Güzel. 2018. Surface modification of black tea waste using bleaching technique for enhanced biosorption of methylene blue in aqueous environment. Separation Science and Technology 53 (18):2882–95. doi:10.1080/01496395.2018.1495735.
  • Senthil Kumar, P., R. V. Abhinaya, K. Gayathri Lashmi, V. Arthi, R. Pavithra, V. Sathyaselvabala, S. Dinesh Kirupha, and S. Sivanesan. 2011. Adsorption of methylene blue dye from aqueous solution by agricultural waste: Equilibrium, thermodynamics, kinetics, mechanism and process design. Colloid Journal 73 (5):651–61. doi:10.1134/S1061933X11050061.
  • Seth, B. M., V. Uniyal, D. Kumar, and A. Singh. 2021. Sorption of cationic and anionic dyes by dead biomass of filamentous green alga Cladophora sp. (Chlorophyceae). International Journal of Environmental Science and Technology.doi: 10.1007/s13762-021-03802-4
  • Silva, F., L. Nascimento, M. Brito, K. da Silva, W. Paschoal, Jr., and R. Fujiyama. 2019. Biosorption of methylene blue dye using natural biosorbents made from weeds. Materials 12 (15):2486. ) doi:10.3390/ma12152486.
  • Singh, H., G. Chauhan, A. K. Jain, and S. K. Sharma. 2017. Adsorptive potential of agricultural wastes for removal of dyes from aqueous solutions. Journal of Environmental Chemical Engineering 5 (1):122–35. doi:10.1016/j.jece.2016.11.030.
  • Venceslau, A., A. C. Mendonça, L. B. Carvalho, G. Ferreira, S. S. Thomasi, and L. Pinto. 2021. Removal of methylene blue from an aqueous medium using atemoya peel as a low-cost adsorbent. Water Air and Soil Pollution 232 (11):455.
  • Vijayaraghavan, J., T. Bhagavathi Pushpa, S. J. Sardhar Basha, and J. Jegan. 2016. Isotherm, kinetics and mechanistic studies of methylene blue biosorption onto red seaweed Gracilaria corticata. Desalination and Water Treatment 57 (29):13540–8. doi:10.1080/19443994.2015.1060174.
  • Wong, S., H. H. Tumari, N. Ngadi, N. B. Mohamed, O. Hassan, R. Mat, and N. A. Saidina Amin. 2019. Adsorption of anionic dyes on spent tea leaves modified with polyethyleneimine (PEI-STL). Journal of Cleaner Production 206:394–406. doi:10.1016/j.jclepro.2018.09.201.
  • Yadav, S. K., S. R. Dhakate, and B. P. Singh. 2022. Carbon nanotube incorporated eucalyptus derived activated carbon-based novel adsorbent for efficient removal of methylene blue and eosin yellow dyes. Bioresource Technology 344 (Pt B):126231. doi:10.1016/j.biortech.2021.126231.
  • Youcefi, D., F. Fernane, A. Hadj-Ziane, and Y. Messara. 2021. The kinetics and equilibrium sorption of methylene blue on plant residues in aqueous solution. Euro-Mediterranean Journal for Environmental Integration 6 (2):59. doi:10.1007/s41207-021-00269-0.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.