1,123
Views
16
CrossRef citations to date
0
Altmetric
Vibrational Spectroscopy

Structural Characterization of Silica and Amino-Silica Nanoparticles by Fourier Transform Infrared (FTIR) and Raman Spectroscopy

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 390-403 | Received 17 Dec 2021, Accepted 24 May 2022, Published online: 06 Jun 2022

References

  • Azarshin, S., J. Moghadasi, and Z. A. Aboosadi. 2017. Surface functionalization of silica nanoparticles to improve the performance of water flooding in oil wet reservoirs. Energy Exploration & Exploitation 35 (6):685–97. doi:10.1177/0144598717716281.
  • Bertoluzza, A., C. Fagnano, M. A. Morelli, V. Gottardi, and M. Guglielmi. 1982. Raman and infrared spectra on silica gel evolving toward glass. Journal of Non-Crystalline Solids 48 (1):117–28. doi:10.1016/0022-3093(82)90250-2.
  • Borowicz, P., A. Taube, W. Rzodkiewicz, M. Latek, and S. Gierałtowska. 2013. Raman spectra of high- κ dielectric layers investigated with micro-Raman spectroscopy comparison with silicon dioxide. The Scientific World Journal 2013:208081–6140. doi:10.1155/2013/208081.
  • Bhattacharyya, S., G. Lelong, and M. L. Saboungi. 2006. Recent progress in the synthesis and selected applications of MCM-41: a short review. Journal of Experimental Nanoscience 1 (3):375–8080. doi:10.1080/17458080600812757.
  • Bretano Capeletti, L, and J. H. Zimnoch. 2016. Fourier transform infrared and Raman characterization of silica-based materials. In Applications of molecular spectroscopy to current research in the chemical and biological sciences, ed. M. T. Stauffer. Rijeka, Croatia: IntechOpen. doi:10.5772/64477.
  • Castillo, R. R., L. de la Torre, F. García-Ochoa, M. Ladero, and M. Vallet-Regí. 2020. Production of MCM-41 nanoparticles with control of particle size and structural properties: optimizing operational conditions during scale-up. International Journal of Molecular Sciences 21 (21):7899. doi:10.3390/ijms21217899.
  • Chligui, M., G. Guimbretière, A. Canizarès, G. Matzen, Y. Vaills, and P. Simon. 2010. New features in the Raman spectrum of Silica: Key-points in the improvement on structure knowledge, 6. Available at https://hal.archives-ouvertes.fr/hal-00520823/document.
  • Coradin, T., D. Eglin, and J. Livage. 2004. The silicomolybdic acid spectrophotometric method and its application to silicate/biopolymer interaction studies. Spectroscopy 18 (4):567–76. doi:10.1155/2004/356207.
  • Firouzi, A., D. Kumar, L. M. Bull, T. Besier, P. Sieger, Q. Huo, S. A. Walker, J. A. Zasadzinski, C. Glinka, J. Nicol, et al. 1995. Cooperative organization of inorganic-surfactant and biomimetic assemblies. Science 267 (5201):1138–43. doi:10.1126/science.7855591.
  • Ikeda, H., and S. Fujino. 2017. Fabrication and characterization of porous silica monolith by sintering silica nanoparticles. Journal of Minerals and Materials Characterization and Engineering 05 (03):. –17.
  • Kankala, R. K., Y.-H. Han, J. Na, C.-H. Lee, Z. Sun, S.-B. Wang, T. Kimura, Y. S. Ok, Y. Yamauchi, A.-Z. Chen, et al. 2020. Nanoarchitectured structure and surface biofunctionality of mesoporous silica nanoparticles. Advanced Materials 32 (23):1907035. doi:10.1002/adma.201907035.
  • Kim, Y., S. J. Kwon, H-k. Jang, B. M. Jung, S. B. Lee, and U. H. Choi. 2017. High ion conducting nanohybrid solid polymer electrolytes via single-ion conducting mesoporous organosilica in poly(ethyleneoxide). Chemistry of Materials 29 (10):4401–10. doi:10.1021/acs.chemmater.7b00879.
  • Kumar, S., M. M. Malik, and R. Purohit. 2018. Synthesis of high surface area mesoporous silica materials using soft templating approach. Materials Today: Proceedings 5 (2):4128–33. doi:10.1016/j.matpr.2017.11.673.
  • Lin, Y.-S., N. Abadeer, and C. L. Haynes. 2011. Stability of small mesoporous silica nanoparticles in biological media. Chemical Communications (Cambridge, England) 47 (1):532–4. doi:10.1039/c0cc02923h.
  • Morsi, R., and R. S. Mohamed. 2018. Nanostructured mesoporous silica: influence of the preparation conditions on the physical-surface properties for efficient organic dye uptake. Royal Society Open Science 5 (3):172021. doi:10.1098/rsos.172021.
  • Narayan, R., U. Y. Nayak, A. M. Raichur, and S. Garg. 2018. Mesoporous silica nanoparticles: a comprehensive review on synthesis and recent advances. Pharmaceutics 10 (3):118. doi:10.3390/pharmaceutics10030118. .
  • Niculescu, V.-C. 2020. Mesoporous silica nanoparticles for bio-applications. Frontiers in Materials 7:14. doi:10.3389/fmats.2020.00036.
  • Oliveira, D. M., and A. S. Andrada. 2019. Synthesis of ordered mesoporous silica MCM-41 with controlled morphology for potential application in controlled drug delivery systems. Cerâmica 65 (374):170–9. doi:10.1590/0366-69132019653742509.
  • Pal, N., J.-H. Lee, and E.-B. Cho. 2020. Recent trends in morphology-controlled synthesis and application of mesoporous silica nanoparticles. Nanomaterials 10 (11):2122. doi:10.3390/nano10112122.
  • Rahman, I. A., and V. Padavettan. 2012. Synthesis of silica nanoparticles by sol-gel: size-dependent properties, surface modification, and applications in silica-polymer nanocomposites—a review. Journal of Nanomaterials 2012:1–15. doi:10.1155/2012/132424.
  • Ruggiero, L., A. Sodo, M. Cestelli-Guidi, M. Romani, A. Sarra, P. Postorino, and M. A. Ricci. 2020. Raman and ATR FT-IR investigations of innovative silica nanocontainers loaded with a biocide for stone conservation treatments. Microchemical Journal 155:104766. doi:10.1016/j.microc.2020.104766.
  • Saleh, T. A. 2021. Protocols for synthesis of nanomaterials, polymers, and green materials as adsorbents for water treatment technologies. Environmental Technology & Innovation 24:101821. doi:10.1016/j.eti.2021.101821.
  • Saleh, T. A. 2022. Experimental and analytical methods for testing inhibitors and fluids in water-based drilling environments. TrAC Trends in Analytical Chemistry 149:116543. doi:10.1016/j.trac.2022.116543.
  • Seo, J. W., W.-J. Lee, S. Nam, H. Ryoo, J.-N. Kim, and C. H. Ko. 2015. Mesoporous structure control of silica in room-temperature synthesis under basic conditions. Journal of Nanomaterials 2015:1–7. doi:10.1155/2015/149654.
  • Socrates, G., 1980. ed. Infrared characteristic group frecvencies. Chichester, New York, Brisbane, Toronto: J. Wiley & Sons.
  • Spallino, L,., L. Vaccaro, S. Sciortino, G. Agnello, M. Buscarino, F. Cannas, and Gelardi, L. 2014. Visible-ultraviolet vibronic emission of silica nanoparticles. Physical Chemistry Chemical Physics: PCCP 16 (40):22028–34. doi:10.1039/c4cp02995j.
  • Thielemann, J. P., F. Girgsdies, R. Schlögl, and C. Hess. 2011. Pore structure and surface area of silica SBA-15: influence of washing and scale-up. Beilstein Journal of Nanotechnology 2:110–8. doi:10.3762/bjnano.2.13.
  • Vazquez, N. I., Z. Gonzalez, B. Ferrari, and Y. Castro. 2017. Synthesis of mesoporous silica nanoparticles by sol–gel as nanocontainer for future drug delivery applications. Boletín de la Sociedad Española de Cerámica y Vidrio 56 (3):139–45. doi:10.1016/j.bsecv.2017.03.002.
  • Wu, S.-H., C.-Y. Mou, and H.-P. Lin. 2013. Synthesis of mesoporous silica nanoparticles. Chemical Society Reviews 42 (9):3862–75. doi:10.1039/c3cs35405a.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.