249
Views
1
CrossRef citations to date
0
Altmetric
Food Analysis

Minireview: Current Trends and Future Challenges for the Determination of Patulin in Food Products

ORCID Icon, ORCID Icon & ORCID Icon
Pages 25-41 | Received 19 Apr 2022, Accepted 24 May 2022, Published online: 02 Jun 2022

References

  • Agriopoulou, S. 2016. Enniatins: An emerging food safety issue. EC Nutrition 5 (3):1142–6.
  • Alshannaq, A. F., and J.-H. Yu. 2017. Occurrence, toxicity, and analysis of major mycotoxins in food. International Journal of Environmental Research and Public Health 14 (6):632. doi:10.3390/ijerph14060632.
  • Assuncao, R., C. Martins, D. Dupont, and P. Alvito. 2016. Patulin and ochratoxin a co-occurrence and their bioaccessibility in processed cereal-based foods: A contribution for Portuguese children risk assessment. Food and Chemical Toxicology : An International Journal Published for the British Industrial Biological Research Association 96:205–14. doi:10.1016/j.fct.2016.08.004.
  • Bagheri, N., A. Khataee, B. Habibi, and J. Hassanzadeh. 2018. Mimetic Ag nanoparticle/Zn-based MOF nanocomposite (AgNPs@ZnMOF) capped with molecularly imprinted polymer for the selective detection of patulin. Talanta 179:710–8. doi:10.1016/j.talanta.2017.12.009.
  • Bessaire, T., I. Perrin, A. Tarres, A. Bebius, F. Reding, and V. Theurillat. 2019. Mycotoxins in green coffee: Occurrence and risk assessment. Food Control 96:59–67. doi:10.1016/j.foodcont.2018.08.033.
  • Binder, E. M., L. M. Tan, L. J. Chin, J. Handl, and J. Richard. 2007. Worldwide occurrence of mycotoxins in commodities feeds and feed ingredients. Animal Feed Science and Technology 137 (3-4):265–82. doi:10.1016/j.anifeedsci.2007.06.005.
  • Commission of the European Communities, EC No 1881/ 2006. 2006. Setting maximum levels for certain contaminants in food stuffs. UK: Official Journal of the European Union.
  • Cunha, S. C., M. A. Faria, V. L. Pereira, T. M. Oliveira, A. C. Lima, and E. Pinto. 2014. Patulin assessment and fungi identification in organic and conventional fruits and derived products. Food Control 44:185–90. doi:10.1016/j.foodcont.2014.03.043.
  • da Silva Lima, G., G. Franco dos Santos, R. R. F. Ramalho, D. V. A. de Aguiar, J. V. Roque, L. I. L. Maciel, R. C. Simas, I. Pereira, and B. G. Vaz. 2022. Laser ablation electrospray ionization mass spectrometry imaging as a new tool for accessing patulin diffusion in mold-infected fruits. Food chemistry373 (Pt B):131490. doi:10.1016/j.foodchem.2021.131490.
  • Dias, J. V., R. C. da Silva, I. R. Pizzutti, I. D. dos Santos, M. Dassi, and C. D. Cardoso. 2019. Patulin in apple and apple juice: Method development, validation by liquid chromatography-tandem mass spectrometry and survey in Brazilian south supermarkets. Journal of Food Composition and Analysis 82:103242. doi:10.1016/j.jfca.2019.103242.
  • Doss, J., K. Culbertson, D. Hahn, J. Camacho, and N. Barekzi. 2017. A review of phage therapy against bacterial pathogens of aquatic and terrestrial organisms. Viruses 9 (3):50. doi:10.3390/v9030050.
  • Ellington, A. D., and J. W. Szostak. 1990. In vitro selection of RNA molecules that bind specific ligands. Nature 346 (6287):818–22. doi:10.1038/346818a0.
  • Fang, G., H. Wang, Y. Yang, G. Liu, and S. Wang. 2016. Development and application of a quartz crystal microbalance sensor based on molecularly imprinted sol-gel polymer for rapid detection of patulin in foods. Sensors and Actuators B: Chemical 237:239–46. doi:10.1016/j.snb.2016.06.099.
  • Food and Agriculture Organization/World Health Organization. 2019. General standard for contaminants and toxins in food and feed CXS 193-1995. European Commission: Codex Alimentarius Commission. 2–66.
  • Funes, G. J., and S. L. Resnik. 2009. Determination of patulin in solid and semisolid apple and pear products marketed in Argentina. Food Control 20 (3):277–80. doi:10.1016/j.foodcont.2008.05.010.
  • Gambacorta, L., N. E. Darra, R. Fakhoury, A. Logrieco, and M. Solfrizzo. 2019. Incidence and levels of Alternaria mycotoxins in spices and herbs produced worldwide and commercialized in Lebanon. Food Control 106:106724. doi:10.1016/j.foodcont.2019.106724.
  • Goud, K. Y., K. K. Reddy, M. Satyanarayana, S. Kummari, and K. V. Gobi. 2019. A review on recent developments in optical and electrochemical aptamer-based assays for mycotoxins using advanced nanomaterials. Mikrochimica Acta 187 (1):29. doi:10.1007/s00604-019-4034-0.
  • Goud, K. Y., S. K. Kailasa, V. Kumar, Y. F. Tsang, S. E. Lee, K. V. Gobi, and K.-H. Kim. 2018. Progress on nanostructured electrochemical sensors and their recognition elements for detection of mycotoxins: A review. Biosensors & Bioelectronics 121:205–22. doi:10.1016/j.bios.2018.08.029.
  • Guo, W., F. Pi, H. Zhang, J. Sun, Y. Zhang, and X. Sun. 2017. A novel molecularly imprinted electrochemical sensor modified with carbon dots, chitosan, gold nanoparticles for the determination of patulin. Biosensors & Bioelectronics 98:299–304. doi:10.1016/j.bios.2017.06.036.
  • Hajrulai-Musliu, Z., R. Uzunov, S. Jovanov, D. Jankuloski, V. Stojkovski, L. Pendovski, and J. J. Sasanya. 2021. A new LC-MS/MS method for multiple residues/contaminants in bovine meat. BMC Chemistry 15 (1):62. doi:10.1186/s13065-021-00788-5.
  • Hatamluyi, B., M. Rezayi, H. R. Beheshti, and M. T. Boroushaki. 2020. Ultra-sensitive molecularly imprinted electrochemical sensor for patulin detection based on a novel assembling strategy using Au@Cu-MOF/N-GQDs. Sensors and Actuators B: Chemical 318:128219. doi:10.1016/j.snb.2020.128219.
  • He, B., and X. Dong. 2018. Aptamer based voltammetric patulin assay based on the use of ZnO nanorods. Mikrochimica Acta 185 (10):462. doi:10.1007/s00604-018-3006-0.
  • Huang, Q., Z. Zhao, D. Nie, K. Jiang, W. Guo, K. Fan, Z. Zhang, J. Meng, Y. Wu, and Z. Han. 2019. Molecularly Imprinted Poly(thionine)-Based Electrochemical Sensing Platform for Fast and Selective Ultratrace Determination of Patulin. Analytical Chemistry 91 (6):4116–23. doi:10.1021/acs.analchem.8b05791.
  • Karaca, H., and S. Nas. 2006. Aflatoxins, patulin, and ergosterol contents of dried figs in turkey. Food Additives and Contaminants 23 (5):502–8. doi:10.1080/02652030600550739.
  • Kebede, H., X. Liu, J. Jin, and F. Xing. 2020. Current status of major mycotoxins contamination in food and feed in Africa. Food Control 110:106975. doi:10.1016/j.foodcont.2019.106975.
  • Khan, R., S. Ben Aissa, T. A. Sherazi, G. Catanante, A. Hayat, and J. L. Marty. 2019. Development of an Impedimetric Aptasensor for Label-Free Detection of Patulin in Apple Juice. Molecules 24 (6):1017. doi:10.3390/molecules24061017.
  • Kluczkovski, A. M. 2019. Fungal and mycotoxin problems in the nut industry. Current Opinion in Food Science 29:56–63. doi:10.1016/j.cofs.2019.07.009.
  • Krska, R., and A. Molinelli. 2009. Rapid test strips for analysis of mycotoxins in food and feed. Analytical and Bioanalytical Chemistry 393 (1):67–71. doi:10.1007/s00216-008-2424-y.
  • Leite, M., A. Freitas, A. S. Silva, J. Barbosa, and F. Ramos. 2020. Maize (Zea mays L.) and mycotoxins: A review on optimization and validation of analytical methods by liquid chromatography coupled to mass spectrometry. Trends in Food Science & Technology 99:542–65. doi:10.1016/j.tifs.2020.03.023.
  • Liang, K., Q. X. Liu, J. H. Xu, Y. Q. Wang, C. S. Okinda, and M. X. Shena. 2018. Determination and Visualization of Different Levels of Deoxynivalenol in Bulk Wheat Kernels by Hyperspectral Imaging. Journal of Applied Spectroscopy85 (5):953–61. doi:10.1007/s10812-018-0745-y.
  • Logrieco, A., D. W. M. Arrigan, K. Brengel-Pesce, P. Siciliano, and I. Tothill. 2005. DNA arrays, electronic noses and tongues, biosensors and receptors for rapid detection of toxigenic fungi and mycotoxins: A review. Food Additives and Contaminants 22 (4):335–44. doi:10.1080/02652030500070176.
  • Luo, Z., Y. Wang, X. Lu, J. Chen, F. Wei, Z. Huang, C. Zhou, and Y. Duan. 2017. Fluorescent aptasensor for antibiotic detection using magnetic bead composites coated with gold nanoparticles and a nicking enzyme. Analytica Chimica Acta 984:177–84. doi:10.1016/j.aca.2017.06.037.
  • Ma, L., T. Guo, S. Pan, and Y. Zhang. 2018. A fluorometric aptasensor for patulin based on the use of magnetized graphene oxide and DNase I-assisted target recycling amplification. Mikrochimica Acta 185 (10):487. doi:10.1007/s00604-018-3023-z.
  • Malhotra, B., S. Srivastava, M. A. Ali, and C. Singh. 2014. Nanomaterial-Based Biosensors for Food Toxin Detection. Applied Biochemistry and Biotechnology 174 (3):880–96. doi:10.1007/s12010-014-0993-0.
  • Mandappa, I. M. K. Basavaraj, and H. K. Manonmani. 2018. Analysis of mycotoxins in fruit juices in fruit juices. In Fruit juices: Extraction, Composition, Quality, and Analysis, ed. G. Rajauria and B. K. Tiwari. 763–777, The Netherland: Elsevier.
  • Mithofer, A., and M. E. Maffei. 2016. General mechanisms of plant defense and plant toxins. 1–22. In Plant Toxins. Toxinology, ed. P. Gopalakrishnakone, C. Carlini, and R. Ligabue-Braun. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6728-7_21-1.
  • Moreno-Gonzalez, D., P. Jac, P. Riasova, and L. Novakova. 2021. In-line molecularly imprinted polymer solid-phase extraction-capillary electrophoresis coupled with tandem mass spectrometry for the determination of patulin in apple-based food. Food Chemistry 334 (127607) doi:10.1016/j.foodchem.2020.127607.
  • Moretti, A., A. F. Logrieco, and A. Susca. 2017. Mycotoxins: An underhand food problem. Methods in Molecular Biology (Clifton, N.J.) 1542:3–12.
  • National Health and Family Planning Commission of the People’s Republic of China. 2017. State Food and Drug Administration, GB 2761-2017 National food safety standard mycotoxin limit in foodstuff. China: Standards Press of China.
  • Nunes da Silva, S. J., P. Z. Schuch, C. R. Bernardi, M. H. Vainstein, A. Jablonski, and R. J. Bender. 2007. Patulin in food: State-of-the-art and analytical trends. Revista Brasileira de Fruticultura29 (2):406–13. doi:10.1590/S0100-29452007000200043.
  • Ostry, V., F. Malir, J. Toman, and Y. Grosse. 2017. Mycotoxins as human carcinogens-the IARC Monographs classification. Mycotoxin Research 33 (1):65–73. doi:10.1007/s12550-016-0265-7.
  • Pascari, X., A. J. Ramos, S. Marín, and V. Sanchis. 2018. Mycotoxins and beer. Impact of beer production process on mycotoxin contamination. A review. Food Research International (Ottawa, Ont.) 103:121–9. doi:10.1016/j.foodres.2017.07.038.
  • Pattono, D., A. Grosso, P. P. Stocco, M. Pazzi, and G. Zeppa. 2013. Survey of the presence of patulin and ochratoxin in traditional semi-hard cheeses. Food Control 33 (1):54–7. doi:10.1016/j.foodcont.2013.02.019.
  • Pereira, V. L., J. O. Fernandes, and S. C. Cunha. 2014. Mycotoxins in cereals and related foodstuffs: A review on occurrence and recent methods of analysis. Trends in Food Science & Technology 36 (2):96–136. doi:10.1016/j.tifs.2014.01.005.
  • Piletsky, S., F. Canfarotta, A. Poma, A. M. Bossi, and S. Piletsky. 2020. Molecularly Imprinted Polymers for Cell Recognition. Trends in Biotechnology 38 (4):368–87. doi:10.1016/j.tibtech.2019.10.002.
  • Puel, O., P. Galtier, and I. P. Oswald. 2010. Biosynthesis and toxicological effects of patulin. Toxins 2 (4):613–31. doi:10.3390/toxins2040613.
  • Ramos Girona, A. J. C. A. Da Rocha Rosa, L. R. Cavaglieri, and C. A. Guedes. 2011. Legislation and economic impact of mycotoxins. In Mycotoxins and mycotoxicosis, ed. A. J. Ramos, 427–62. Madrid. España.
  • Rasmussen, S., A. Andersen, N. Andersen, K. Nielsen, P. Hansen, and T. O. Larsen. 2016. Chemical diversity, origin, and analysis of phycotoxins. Journal of Natural Products 79 (3):662–73. doi:10.1021/acs.jnatprod.5b01066.
  • Regal, P., M. Diaz-Bao, R. Barreiro, C. Fente, and A. Cepeda. 2017. Design of a molecularly imprinted stir-bar for isolation of patulin in apple and LC-MS/MS detection. Separations 4 (2):11. doi:10.3390/separations4020011.
  • Rodríguez, A., M. Rodríguez, M. J. Andrade, and M. D. G. Cordoba. 2015. Detection of filamentous fungi in foods. Current Opinion in Food Science 5:36–42. doi:10.1016/j.cofs.2015.07.007.
  • Sadok, I., A. Szmagara, and M. M. Staniszewska. 2018. The validated and sensitive HPLC-DAD method for determination of patulin in strawberries. Food Chemistry 245:364–70. doi:10.1016/j.foodchem.2017.10.093.
  • Sanzani, S. M., M. Reverberi, and R. Geisen. 2016. Mycotoxins in harvested fruits and vegetables: Insights in producing fungi, biological role, conducive conditions, and tools to manage postharvest contamination. Postharvest Biology and Technology 122:95–105. doi:10.1016/j.postharvbio.2016.07.003.
  • Schlegel, K. M., and P. W. Elsinghorst. 2020. Myco-DES: Enabling remote extraction of mycotoxins for robust and reliable quantification by stable isotope dilution LC-MS/MS. Analytical Chemistry 92 (7):5387–95. doi:10.1021/acs.analchem.0c00087.
  • Seale, H., A. A. Blencowe, H. Manu, R. Nair, S. A. Bahl, A. K. Qazi, J. A. Zaidi, S. N. Berkley, J. E. Cousens, and Lawn, A. C. 2014. Estimates of possible severe bacterial infection in neonates in sub-Saharan Africa, South Asia, and Latin America for 2012: A systematic review and meta-analysis. The Lancet. Infectious Diseases 14 (8):731–41. doi:10.1016/S1473-3099(14)70804-7.
  • Selvam, S. P., A. N. Kadam, K. R. Maiyelvaganan, M. Prakash, and S. Cho. 2021. Novel SeS2-loaded Co MOF with Au@PANI comprised electroanalytical molecularly imprinted polymer-based disposable sensor for patulin mycotoxin. Biosensors & Bioelectronics 187:113302. doi:10.1016/j.bios.2021.113302.
  • Shukla, S., Y. Haldorai, I. Khan, S.-M. Kang, C. H. Kwak, S. Gandhi, V. K. Bajpai, Y. S. Huh, and Y.-K. Han. 2020. Bioreceptor-free, sensitive and rapid electrochemical detection of patulin fungal toxin, using a reduced graphene oxide@SnO2 nanocomposite. Materials Science & Engineering. C, Materials for Biological Applications 113:110916. doi:10.1016/j.msec.2020.110916.
  • Song, X., D. Wang, and M. Kim. 2021. Development of an immuno-electrochemical glass carbon electrode sensor based on graphene oxide/gold nanocomposite and antibody for the detection of patulin. Food Chemistry 342:128257. doi:10.1016/j.foodchem.2020.128257.
  • Spadaro, D., G. R. Meloni, I. Siciliano, S. Prencipe, and M. L. Gullino. 2020. HPLC-MS/MS method for the detection of selected toxic metabolites produced by Penicillium spp. in nuts. Toxins 12 (5):307. doi:10.3390/toxins12050307.
  • Stadler, D., F. Berthiller, M. Suman, R. Schuhmacher, and R. Krska. 2020. Novel analytical methods to study the fate of mycotoxins during thermal food processing. Analytical and Bioanalytical Chemistry 412 (1):9–16. doi:10.1007/s00216-019-02101-9.
  • Tabrizi, M. A., M. A. Shamsipur, R. Saber, S. Sarkar, and V. Ebrahimi. 2017. A high sensitive visible light-driven photoelectrochemical aptasensor for shrimp allergen tropomyosin detection using graphitic carbon nitride-TiO2 nanocomposite. Biosensors & Bioelectronics 98:113–8. doi:10.1016/j.bios.2017.06.040.
  • Tannous, J., A. Atoui, A. E. Khoury, S. Kantar, N. Chdid, I. P. Oswald, O. Puel, and R. Lteif. 2015. Development of a real-time PCR assay for Penicillium expansum quantification and patulin estimation in apples. Food Microbiology 50:28–37. doi:10.1016/j.fm.2015.03.001.
  • US Food and Drug Administration. 2004. Food and Drug Administration (FDA) Compliance Policy Guide. Compliance policy guidance for fda staff. Sec. 510.150 Apple juice, apple juice concentrates, and apple juice products—Adulteration with patulin. Silver Spring, MD.
  • Van de Perre, E., L. Jacxsens, W. Van Der Hauwaert, I. Haesaert, and B. De Meulenaer. 2014. Screening for the presence of patulin in molded fresh produce and evaluation of its stability in the production of tomato products. Journal of Agricultural and Food Chemistry 62 (1):304–9. doi:10.1021/jf404192n.
  • Varzakas, T. 2016. Quality and safety aspects of cereals (wheat) and their products. Critical Reviews in Food Science and Nutrition 56 (15):2495–510. doi:10.1080/10408398.2013.866070.
  • Viegas, S., R. Assunção, M. Twarużek, R. Kosicki, J. Grajewski, and C. Viegas. 2020. Mycotoxins feed contamination in a dairy farm - potential implications for milk contamination and workers' exposure in a One Health approach. Journal of the Science of Food and Agriculture 100 (3):1118–23. doi:10.1002/jsfa.10120.
  • Wei, F., X. Liu, X. Liao, L. Shi, S. Zhang, J. Lu, L. Zhou, and W. J. Kong. 2019. Simultaneous determination of 19 mycotoxins in lotus seed using a multimycotoxin UFLC-MS/MS method. Journal of Pharmacy and Pharmacology 71 (7):1172–83. doi:10.1111/jphp.13101.
  • Welke, J. E. 2019. Fungal and mycotoxin problems in grape juice and wine industries. Current Opinion in Food Science 29:7–13. doi:10.1016/j.cofs.2019.06.009.
  • Welke, J. E., M. Hoeltz, H. A. Dottori, and I. B. Noll. 2009. Effect of processing stages of apple juice concentrates on patulin levels. Food Control 20 (1):48–52. doi:10.1016/j.foodcont.2008.02.001.
  • Wild, C. P., and Y. Y. Gong. 2010. Mycotoxins and human disease: A largely ignored global health issue. Carcinogenesis 31 (1):71–82. doi:10.1093/carcin/bgp264.
  • Wu, S., N. Duan, W. Zhang, S. Zhao, and Z. Wang. 2016. Screening and development of DNA aptamers as capture probes for colorimetric detection of patulin. Analytical Biochemistry 508:58–64. doi:10.1016/j.ab.2016.05.024.
  • Wu, Z., E. Xu, Z. Jin, and J. Irudayaraj. 2018. An ultrasensitive aptasensor based on fluorescent resonant energy transfer and exonuclease-assisted target recycling for patulin detection. Food Chemistry 249:136–42. doi:10.1016/j.foodchem.2018.01.025.
  • Xia, Y., M. Liu, L. Wang, A. Yan, W. He, M. Chen, J. Lan, J. Xu, L. Guan, and J. Chen. 2017. A visible and colorimetric aptasensor based on DNA-capped single-walled carbon nanotubes for detection of exosomes. Biosensors & Bioelectronics 92:8–15. doi:10.1016/j.bios.2017.01.063.
  • Xiao, H., and S. Fu. 2012. A Sensitive Gas Chromatography-Mass Spectrometry Method for the Determination of Patulin in Apple Juice. Journal of AOAC International 95 (6):1709–12. doi:10.5740/jaoacint.11-169.
  • Xu, J., X. Qiao, Y. Wang, Q. Sheng, T. Yue, J. Zheng, and M. Zhou. 2019. Electrostatic assembly of gold nanoparticles on black phosphorus nanosheets for electrochemical aptasensing of patulin. Mikrochimica Acta 186 (4):238. doi:10.1016/j.foodchem.2018.01.025.
  • Yang, Y., Y. Yang, B. Shao, and J. Zhang. 2017. A simple and rapid method for determination of patulin in juice by High-Performance Liquid Chromatography-tandem Mass Spectrometry. Food Analytical Methods 10 (9):2913–8. doi:10.1007/s12161-017-0859-5.
  • Zbyňovská, K., P. Petruška, A. Kalafová, and M. Capcarová. 2016. Patulin - a Contaminant of Food and Feed: A review. Acta Fytotechnica et zootechnica 19 (02):64–7. doi:10.15414/afz.2016.19.02.64-67.
  • Zhang, L., X.-W. Dou, C. Zhang, A. Logrieco, and M. Yang. 2018. A Review of Current Methods for Analysis of Mycotoxins in Herbal Medicines. Toxins 10 (2):65. doi:10.3390/toxins10020065.
  • Zhang, W., Y. Han, X. Chen, X. Luo, J. Wang, T. Yue, and Z. Li. 2017. Surface molecularly imprinted polymer capped Mn-doped ZnS quantum dots as a phosphorescent nanosensor for detecting patulin in apple juice. Food Chemistry 232:145–54. doi:10.1016/j.foodchem.2017.03.156.
  • Zhao, M., H. Shao, Y. He, H. Li, M. Yan, Z. Jiang, J. Wang, A. M. Abd El-Aty, A. Hacımüftüoğlu, F. Yan, et al. 2019. The determination of patulin from food samples using dual-dummy molecularly imprinted solid-phase extraction coupled with LC-MS/MS. Journal of Chromatography B 1125:121714. doi:10.1016/j.jchromb.2019.121714.
  • Zhong, L., J. Carere, Z. Lu, F. Lu, and T. Zhou. 2018. Patulin in Apples and Apple-Based Food Products: The Burdens and the Mitigation Strategies. Toxins (Basel) 10 (11):475. doi:10.3390/toxins10110475.
  • Zhou, Q., and D. Tang. 2020. Recent advances in photoelectrochemical biosensors for analysis of mycotoxins in food. TrAC Trends in Analytical Chemistry 124:115814. doi:10.1016/j.trac.2020.115814.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.