352
Views
2
CrossRef citations to date
0
Altmetric
Environmental Analysis

Characterization of the Adsorption Mechanism of Cadmium(II) and Methylene Blue upon Corncobs Activated Carbon

, , , , & ORCID Icon
Pages 433-448 | Received 16 Feb 2022, Accepted 02 Jul 2022, Published online: 15 Jul 2022

References

  • Abdulhameed, A. S., N. N. M. F. Hum, S. Rangabhashiyam, A. H. Jawad, L. D. Wilson, Z. M. Yaseen, A. A. Al-Kahtani, and Z. A. ALOthman. 2021. Statistical modeling and mechanistic pathway for methylene blue dye removal by high surface area and mesoporous grass-based activated carbon using K2CO3 activator. Journal of Environmental Chemical Engineering 9 (4):105530.
  • Aljeboree, A. M., and A. F. Alkaim. 2019. Comparative removal of three textile dyes from aqueous solutions by adsorption: As a model (corn-cob source waste) of plants role in environmental enhancement. Plant Archives 19 (1):1613–20.
  • Aljeboree, A. M., F. H. Hussein, and A. F. Alkaim. 2019. Removal of textile dye (methylene blue MB) from aqueous solution by activated carbon as a model (corn-cob source waste of plant): As a model of environmental enhancement. Plant Archives 19 (2):906–9.
  • Alkherraz, A. M., A. K. Ali, and K. M. Elsherif. 2020. Removal of Pb(II), Zn(II), Cu(II) and Cd(II) from aqueous solutions by adsorption onto olive branches activated carbon: Equilibrium and thermodynamic studies. Chemistry International 6 (1):11–20.
  • Alslaibi, T. M., I. Abustan, M. A. Ahmad, and A. A. Foul. 2013. Cadmium removal from aqueous solution using microwaved olive stone activated carbon. Journal of Environmental Chemical Engineering 1 (3):589–99. doi: 10.1016/j.jece.2013.06.028.
  • ASTM D2854-96. 2004/2006. Standard test method for total ash content of activated carbon. In Annual book of ASTM standards. West Conshohocken, PA: ASTM.
  • ASTM D5832-98. 2003/2006. Standard test method for volatile matter content of activated carbon samples. In Annual book of ASTM standards. West Conshohocken, PA: ASTM.
  • Aworn, A., P. Thiravetyan, and W. Nakbanpote. 2009. Preparation of CO2 activated carbon from corncob for monoethylene glycol adsorption. Colloids and Surfaces A: Physicochemical and Engineering Aspects 333 (1–3):19–25. doi: 10.1016/j.colsurfa.2008.09.021.
  • Bednárek, J., L. Matějová, I. Koutník, M. Vráblová, G. J. F. Cruz, T. Strašák, P. Šiler, and J. Hrbáč. 2022. Revelation of high-adsorption-performance activated carbon for removal of fluoroquinolone antibiotics from water. Biomass Conversion and Biorefinery. doi:10.1007/s13399-022-02577-z.
  • Belhamdi, B., Z. Merzougui, M. Trari, and A. Addoun. 2016. A kinetic, equilibrium and thermodynamic study of l-phenylalanine adsorption using activated carbon based on agricultural waste (date stones). Journal of Applied Research and Technology 14 (5):354–66. doi:10.1016/j.jart.2016.08.004.
  • Bhomick, P. C., A. Supong, M. Baruah, C. Pongener, C. Gogoi, and D. Sinha. 2020. Alizarin Red S adsorption onto biomass‐based activated carbon: Optimization of adsorption process parameters using Taguchi experimental design. International Journal of Environmental Science and Technology 17 (2):1137–48. doi:10.1007/s13762-019-02389-1.
  • Boehm, H. P., E. Diehl, W. Heck, and R. Sappok. 1964. Identification of functional groups insurface oxides of soot and other carbons. Angewandte Chemie International Edition in English 3 (10):669–75. doi:10.1002/anie.196406691.
  • Boudrahem, F., A. Soualah, and F. Aissani-Benissad. 2011. Pb(II) and Cd(II) Removal from aqueous solutions using activated carbon developed from coffee residue activated with phosphoric acid and zinc chloride. Journal of Chemical & Engineering Data 56 (5):1946–55. doi:10.1021/je1009569.
  • Bozbeyoglu, P., C. Duran, C. Baltaci, and A. Gundogdu. 2020. Adsorption of methylene blue from aqueous solution with sulfuric acid activated corn cobs: Equilibrium, kinetics and thermodynamics assessment. Hittite Journal of Science & Engineering 7 (3):239–56. doi:10.17350/HJSE19030000193.
  • El-Hendawy, A. N. A. 2003. Influence of HNO3 oxidation on the structure and adsorptive properties of corncob-based activated carbon. Carbon 41 (4):713–22. doi:10.1016/S0008-6223(03)00029-0.
  • El-Hendawy, A. N. A., S. E. Samra, and B. S. Girgis. 2001. Adsorption characteristics of activated carbons obtained from corncobs. Colloids and Surfaces A: Physicochemical and Engineering Aspects 180 (3):209–21. doi:10.1016/S0927-7757(00)00682-8.
  • El-Sayed, G. O., M. M. Yehia, and A. A. Asaad. 2014. Assessment of activated carbon prepared from corncob by chemical activation with phosphoric acid. Water Resources and Industry 7–8:66–75. doi:10.1016/j.wri.2014.10.001.
  • Erdogan, S., Y. Onal, C. Akmil-Basar, S. Bilmez-Erdemoglu, C. Sarici-Ozdemir, E. Koseoglu, and G. Icduygu. 2005. Optimization of nickel adsorption from aqueous solutionby using activated carbon prepared from waste apricot by chemical activation. Applied Surface Science 252:1324–31.
  • Gundogdu, A., C. Duran, H. B. Senturk, M. Soylak, D. Ozdes, H. Serencam, and M. Imamoglu. 2012. Adsorption of phenol from aqueous solution on a low-cost activated carbon produced from tea industry waste: Equilibrium, kinetic, and thermodynamic study. Journal of Chemical & Engineering Data 57 (10):2733–43. doi:10.1021/je300597u.
  • Gundogdu, A., C. Duran, H. B. Senturk, M. Soylak, M. Imamoglu, and Y. Onal. 2013. Physicochemical characteristics of a novel activated carbon produced from tea industry waste. Journal of Analytical and Applied Pyrolysis 104:249–59. doi:10.1016/j.jaap.2013.07.008.
  • Hasanzadeh, M., A. Simchi, and H. S. Far. 2020. Nanoporous composites of activated carbon-metal organic frameworks for organic dye adsorption: Synthesis, adsorption mechanism and kinetics studies. Journal of Industrial and Engineering Chemistry 81:405–14. doi:10.1016/j.jiec.2019.09.031.
  • Inyang, M., B. Gao, Y. Yao, Y. W. Xue, A. R. Zimmerman, P. Pullammanappallil, and X. D. Cao. 2012. Removal of heavy metals from aqueous solution by biochars derived from anaerobically digested biomass. Bioresource Technology 110:50–6. doi:10.1016/j.biortech.2012.01.072.
  • Jawad, A. H., and A. S. Abdulhameed. 2020. Statistical modeling of methylene blue dye adsorption by high surface area mesoporous activated carbon from bamboo chip using KOH-assisted thermal activation. Energy, Ecology and Environment 5 (6):456–69. doi:10.1007/s40974-020-00177-z.
  • Jawad, A. H., M. Bardhan, M. A. Islam, M. A. Islam, S. S. A. Syed-Hassan, S. N. Surip, Z. A. ALOthman, and M. R. Khan. 2020. Insights into the modeling, characterization and adsorption performance of mesoporous activated carbon from corn cob residue via microwave-assisted H3PO4 activation. Surfaces and Interfaces 21:100688. doi:10.1016/j.surfin.2020.100688.
  • Kadirvelu, K., and C. Namasivayam. 2003. Activated carbon from coconut coirpith as metal adsorbent: Adsorption of Cd(II) from aqueous solution. Advances in Environmental Research 7 (2):471–8. doi:10.1016/S1093-0191(02)00018-7.
  • Kaźmierczak, J., P. Nowicki, and R. Pietrzak. 2013. Sorption properties of activated carbons obtained from corn cobs by chemical and physical activation. Adsorption 19 (2–4):273–81. doi:10.1007/s10450-012-9450-y.
  • Khormaei, M., B. Nasernejad, M. Edrisi, and T. Eslamzadeh. 2007. Copper biosorption from aqueous solutions by sour orange residue. Journal of Hazardous Materials 149 (2):269–74. doi:10.1016/j.jhazmat.2007.03.074.
  • Kuroki, A., M. Hiroto, Y. Urushihara, T. Horikawa, K.-I. Sotowa, and J. R. A. Avila. 2019. Adsorption mechanism of metal ions on activated carbon. Adsorption 25 (6):1251–8. doi:10.1007/s10450-019-00069-7.
  • Langmuir, I. 1918. The adsorption of gases on plane surfaces of glass, mica, and platinum. Journal of the American Chemical Society 40 (9):1361–403. doi:10.1021/ja02242a004.
  • Lee, S. M., and A. P. Davis. 2001. Removal of Cu(II) and Cd(II) from aqueous solution by seafood processing waste sludge. Water Research 35 (2):534–40. doi:10.1016/S0043-1354(00)00284-0.
  • Li, Y., Q. Du, T. Liu, X. Peng, J. Wang, J. Sun, Y. Wang, S. Wu, Z. Wang, Y. Xia, and L. Xia. 2013. Comparative study of methylene blue dye adsorption onto activated carbon, graphene oxide, and carbon nanotubes. Chemical Engineering Research and Design 91 (2):361–8.
  • Lopez-Ramon, V., C. Moreno-Castilla, J. Rivera-Utrilla, and L. R. Radovic. 2003. Ionic strength effects in aqueous phase adsorption of metal ions on activated carbons. Carbon 41 (10):2020–2. doi:10.1016/S0008-6223(03)00184-2.
  • Munoz, Y., R. Arriagada, G. Soto-Garrido, and R. Garcia. 2003. Phosphoric and boric acid activation of pine sawdust. Journal of Chemical Technology & Biotechnology 78 (12):1252–8. doi:10.1002/jctb.923.
  • Njoku, V. O., and B. H. Hameed. 2011. Preparation and characterization of activated carbon from corncob by chemical activation with H3PO4 for 2,4-dichlorophenoxyacetic acid adsorption. Chemical Engineering Journal 173 (2):391–9. doi:10.1016/j.cej.2011.07.075.
  • Noh, J. S., and J. A. Schwarz. 1989. Estimation of the point of zero charge of simple oxides by mass titration. Journal of Colloid and Interface Science 130 (1):157–64. doi:10.1016/0021-9797(89)90086-6.
  • Qada, E. N. E., S. J. Allen, and G. M. Walker. 2006. Adsorption of methylene blue onto activated carbon produced from steam activated bituminous coal: A study of equilibrium adsorption isotherm. Chemical Engineering Journal 124 (1–3):103–10. doi:10.1016/j.cej.2006.08.015.
  • Ramos, M. E., P. R. Bonelli, S. Blacher, M. M. L. Ribeiro Carrott, P. J. M. Carrott, and A. L. Cukierman. 2011. Effect of the activating agent on physico-chemical and electrical properties of activated carbon cloths developed from a novel cellulosic precursor. Colloids and Surfaces A: Physicochemical and Engineering Aspects 378 (1–3):87–93. doi:10.1016/j.colsurfa.2011.02.005.
  • Rao, M. M., D. K. Ramana, K. Seshaiah, M. C. Wang, and S. W. C. Chien. 2009. Removal of some metal ions by activated carbon prepared from Phaseolus aureus hulls. Journal of Hazardous Materials 166 (2–3):1006–13. doi:10.1016/j.jhazmat.2008.12.002.
  • Sadh, P. K., Duhan, S. and J. S. Duhan. 2018. Agro‐industrial wastes and their utilization using solid state fermentation: A review. Bioresources and Bioprocessing 5 (1):15. doi:10.1186/s40643-017-0187-z.
  • Sanchez-Polo, M., and J. Rivera-Utrilla. 2002. Adsorbent-adsorbate interactions in the adsorption of Cd(II) and Hg(II) on ozonized activated carbons. Environmental Science & Technology 36 (17):3850–4. doi:10.1021/es0255610.
  • Thongkrua, S., and P. Suriya. 2022. Removal of colour and COD in biologically pre-treated leachate using activated carbon from corn cobs. Pollution 8 (2):657–70.
  • Tran, H. N., Y.-F. Wang, S.-J. You, and H.-P. Chao. 2017. Insights into the mechanism of cationic dye adsorption on activated charcoal: The importance of π–π interactions. Process Safety and Environmental Protection 107:168–80. doi:10.1016/j.psep.2017.02.010.
  • Tseng, R. L., and S. K. Tseng. 2005. Pore structure and adsorption performance of the KOH-activated carbon prepared from corncob. Journal of Colloid and İnterface Science 287 (2):428–37. doi:10.1016/j.jcis.2005.02.033.
  • Üner, O., Ü. Geçgel, and Y. Bayrak. 2016. Adsorption of methylene blue by an efficient activated carbon prepared from citrullus lanatus rind: Kinetic, isotherm, thermodynamic, and mechanism analysis. Water, Air, & Soil Pollution 227 (7):247. doi:10.1007/s11270-016-2949-1.
  • Vural, A., A. Gundogdu, I. Akpinar, and C. Baltaci. 2017. Environmental impact of Gümüşhane city, Turkey, waste area in terms of heavy metal pollution. Natural Hazards 88 (2):867–90. doi:10.1007/s11069-017-2896-1.
  • Wu, F. C., R. L. Tseng, and R. S. Juang. 2001. Adsorption of dyes and phenols from water on the activated carbons prepared from corncob wastes. Environmental Technology 22 (2):205–13. doi:10.1080/09593332208618296.
  • Zhang, Z., T. Wang, H. Zhang, Y. Liu, and B. Xing. 2021. Adsorption of Pb(II) and Cd(II) by magnetic activated carbon and its mechanism. The Science of the Total Environment 757:143910. doi:10.1016/j.scitotenv.2020.143910.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.