506
Views
6
CrossRef citations to date
0
Altmetric
Food Analysis

Highlighting the Potential of Attenuated Total Reflectance – Fourier Transform Infrared (ATR-FTIR) Spectroscopy to Characterize Honey Samples with Principal Component Analysis (PCA)

, , , , , , & show all
Pages 789-806 | Received 15 Jun 2022, Accepted 14 Jul 2022, Published online: 28 Jul 2022

References

  • Abou-Shaara, H. F. 2017. Effects of various sugar feeding choices on survival and tolerance of honey bee workers to low temperatures. Journal of Entomological and Acarological Research 49 (1):6200. doi:10.4081/JEAR.2017.6200.
  • Al, M. L., D. Daniel, A. Moise, O. Bobis, L. Laslo, and S. Bogdanov. 2009. Physico-chemical and bioactive properties of different floral origin honeys from Romania. Food Chemistry 112 (4):863–7. doi:10.1016/j.foodchem.2008.06.055.
  • Al Naggar, Y., A. El-Sofany, E. Naiem, and A. Seif. 2018. Characterization of Apis mellifera honey of different botanical and geographical origins in Egypt. The Egyptian Journal of Experimental Biology (Zoology) 14 (1):75–84. doi:10.5455/egysebz.20180523104927.
  • Alves, A., A. Ramos, M. M. Gonçalves, M. Bernardo, and B. Mendes. 2013. Antioxidant activity, quality parameters and mineral content of Portuguese monofloral honeys. Journal of Food Composition and Analysis 30 (2):130–8. doi:10.1016/j.jfca.2013.02.009.
  • Andreou, V., I. F. Strati, C. Fotakis, M. Liouni, P. Zoumpoulakis, and V. J. Sinanoglou. 2018. Herbal distillates: a new era of grape marc distillates with enriched antioxidant profile. Food Chemistry 253:171–8. doi:10.1016/j.foodchem.2018.01.162.
  • Anjos, O., M. G. Campos, P. C. Ruiz, and P. Antunes. 2015. Application of FTIR-ATR spectroscopy to the quantification of sugar in honey. Food Chemistry 169:218–23. doi:10.1016/j.foodchem.2014.07.138.
  • Brangule, A., R. Šukele, and D. Bandere. 2020. Herbal medicine characterization perspectives using advanced FTIR sample techniques - diffuse reflectance (DRIFT) and photoacoustic spectroscopy (PAS). Frontiers in Plant Science 11:356. doi:10.3389/fpls.2020.00356.
  • Bueno-Costa, F. M., F. Manhago, R. C. Zambiazi, B. Wendt Bohmer, F. Clasen Chaves, W. P. da Silva, J. Teixeira Zanusso, and I. Dutra. 2016. Antibacterial and antioxidant activity of honeys from the state of Rio Grande Do Sul, Brazil. LWT - Food Science and Technology 65:333–40. doi:10.1016/j.lwt.2015.08.018.
  • Can, Z., O. Yildiz, H. Sahin, E. Akyuz Turumtay, S. Silici, and S. Kolayli. 2015. An investigation of Turkish honeys: their physico-chemical properties, antioxidant capacities and phenolic profiles. Food Chemistry 180:133–41. doi:10.1016/j.foodchem.2015.02.024.
  • Ciulu, M., E. Oertel, R. Serra, R. Farre, N. Spano, M. Caredda, L. Malfatti, and G. Sanna. 2020. Classification of unifloral honeys from SARDINIA (Italy) by ATR-FTIR spectroscopy and random forest. Molecules 26 (1):88. doi:10.3390/molecules26010088.
  • del Campo, G., J. Zuriarrain, A. Zuriarrain, and I. Berregi. 2016. Quantitative determination of carboxylic acids, amino acids, carbohydrates, ethanol and hydroxymethylfurfural in honey by (1)H NMR. Food Chemistry 196:1031–9. doi:10.1016/j.foodchem.2015.10.036.
  • EU. Council Directive 2001/110/EC of 20 December 2001 Relating to Honey. https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:32001L0110.
  • Formosa, J. P., F. Lia, D. Mifsud, and C. Farrugia. 2020. Application of ATR-FT-MIR for tracing the geographical origin of honey produced in the Maltese Islands. Foods 9 (6):710. doi:10.3390/foods9060710.
  • Gok, S., M. Severcan, E. Goormaghtigh, I. Kandemir, and F. Severcan. 2015. Differentiation of Anatolian honey samples from different botanical origins by ATR-FTIR spectroscopy using multivariate analysis. Food Chemistry 170:234–40. doi:10.1016/j.foodchem.2014.08.040.
  • Grassi, S., J. M. Amigo, C. B. Lyndgaard, R. Foschino, and E. Casiraghi. 2014. Beer fermentation: monitoring of process parameters by FT-NIR and multivariate data analysis. Food Chemistry 155:279–86. doi:10.1016/j.foodchem.2014.01.060.
  • Hong, T., J. Y. Yin, S. P. Nie, and M. Y. Xie. 2021. Applications of infrared spectroscopy in polysaccharide structural analysis: progress, challenge and perspective. Food Chemistry: X 12 (100168):100168. doi:10.1016/j.fochx.2021.100168.[PMC][34877528].
  • Iglesias, M. T., C. De Lorenzo, M. Del Carmen Polo, P. J. Martín-Alvarez, and E. Pueyo. 2004. Usefulness of amino acid composition to discriminate between honeydew and floral honeys. Application to honeys from a small geographic area. Journal of Agricultural and Food Chemistry 52 (1):84–9. doi:10.1021/jf030454q.
  • Karabagias, I. K. 2022. HS-SPME/GC-MS metabolomic analysis for the identification of exogenous volatile metabolites of monofloral honey and quality control suggestions. European Food Research and Technology 248 (7):1815–21. doi:10.1007/s00217-022-04007-w.
  • Karabagias, I. K., A. V. Badeka, S. Kontakos, S. Karabournioti, and M. G. Kontominas. 2014. Botanical discrimination of greek unifloral honeys with physico-chemical and chemometric analyses. Food Chemistry 165:181–90. doi:10.1016/j.foodchem.2014.05.033.
  • Kavanagh, S., J. Gunnoo, T. Marques Passos, J. C. Stout, and B. White. 2019. Physicochemical properties and phenolic content of honey from different floral origins and from rural versus urban landscapes. Food Chemistry 272:66–75. doi:10.1016/j.foodchem.2018.08.035.
  • Konteles, S. J., I. F. Strati, M. Giannakourou, A. Batrinou, S. Papadakis, D. Ourailoglou, P. Zoumpoulakis, and V. J. Sinanoglou. 2022. Instant herbal powder: functionality assessment through chemical, microbiological and shelf life kinetics. Analytical Letters 55 (9):1505–16. doi:10.1080/00032719.2021.2011897.
  • Kozłowicz, K., R. Różyło, B. Gładyszewska, A. Matwijczuk, G. Gładyszewski, D. Chocyk, K. Samborska, J. Piekut, and M. Smolewska. 2020. Identification of sugars and phenolic compounds in honey powders with the use of GC–MS, FTIR spectroscopy, and X-ray diffraction. Scientific Reports 10 (1):16269. doi:10.1038/s41598-020-73306-7.
  • Lantzouraki, D. Z., V. J. Sinanoglou, P. Zoumpoulakis, J. Glamočlija, A. Ćirić, M. Soković, G. Heropoulos, and C. Proestos. 2015. Antiradical–antimicrobial activity and phenolic profile of pomegranate (Punica Granatum L.) juices from different cultivars: a comparative study. RSC Advances 5 (4):2602–14. doi:10.1039/C4RA11795F.
  • Lantzouraki, D. Z., V. J. Sinanoglou, P. Zoumpoulakis, and C. Proestos. 2016. Comparison of the antioxidant and antiradical activity of pomegranate (Punica Granatum L.) by ultrasound-assisted and classical extraction. Analytical Letters 49 (7):969–78. doi:10.1080/00032719.2015.1038550.
  • Li, Y., D. Kong, and H. Wu. 2018. Comprehensive chemical analysis of the flower buds of five lonicera species by ATR-FTIR, HPLC-DAD, and chemometric methods. Revista Brasileira de Farmacognosia 28 (5):533–41. doi:10.1016/j.bjp.2018.06.007.
  • Liben, T., M. Atlabachew, and A. Abebe. 2018. Total phenolic, flavonoids and some selected metal content in honey and propolis samples from South Wolo Zone, Amhara Region, Ethiopia. Cogent Food & Agriculture 4 (1):1475925. doi:10.1080/23311932.2018.1475925.
  • Mateo, F., A. Tarazona, and E. M. Mateo. 2021. Comparative study of several machine learning algorithms for classification of unifloral honeys. Foods 10 (7):1543. doi:10.3390/foods10071543.
  • Nousias, P., I. K. Karabagias, S. Kontakos, and K. A. Riganakos. 2017. Characterization and differentiation of greek commercial thyme honeys according to geographical origin based on quality and some bioactivity parameters using chemometrics. Journal of Food Processing and Preservation 41 (4):e13061. doi:10.1111/jfpp.13061.
  • Oliveira, R. N., M. Cordeiro Mancini, F. C. Salles de Oliveira, T. M. Passos, B. Quilty, R. M. da Silva Moreira Thiré, and G. B. McGuinness. 2016. FTIR analysis and quantification of phenols and flavonoids of five commercially available plants extracts used in wound healing. Matéria (Rio de Janeiro) 21 (3):767–79. doi:10.1590/S1517-707620160003.0072.
  • Orfanakis, E., M. Markoulidakis, A. Philippidis, A. Zoumi, and M. Velegrakis. 2021. Optical spectroscopy methods combined with multivariate statistical analysis for the classification of cretan thyme, multi-floral and honeydew honey. Journal of the Science of Food and Agriculture 101 (13):5337–47. doi:10.1002/jsfa.11182.
  • Pauliuc, D., F. Dranca, and M. Oroian. 2020. Antioxidant activity, total phenolic content, individual phenolics and physicochemical parameters suitability for Romanian honey authentication. Foods 9 (3):306. doi:10.3390/foods9030306.
  • Pauliuc, D., F. Dranca, S. Ropciuc, and M. Oroian. 2022. Advanced characterization of monofloral honeys from Romania. Agriculture 12 (4):526. doi:10.3390/agriculture12040526.
  • Pena Júnior, D. S., C. A. Almeida, M. C. F. Santos, P. H. V. Fonseca, E. V. Menezes, A. F. de Melo Junior, M. M. Brandão, D. A. de Oliveira, L. F. d Souza, J. C. Silva, et al. 2022. Antioxidant activities of some monofloral honey types produced across Minas Gerais (Brazil). Plos One 17 (1):e0262038. doi:10.1371/journal.pone.0262038.
  • Pita-Calvo, C., and M. Vázquez. 2017. Differences between honeydew and blossom honeys: a review. Trends in Food Science & Technology 59:79–87. doi:10.1016/j.tifs.2016.11.015.
  • Recklies, K., C. Peukert, I. Kölling-Speer, and K. Speer. 2021. Differentiation of honeydew honeys from blossom honeys and according to their botanical origin by electrical conductivity and phenolic and sugar spectra. Journal of Agricultural and Food Chemistry 69 (4):1329–47. doi:10.1021/acs.jafc.0c05311.
  • Saxena, S., S. Gautam, and A. Sharma. 2010. Physical, biochemical and antioxidant properties of some Indian honeys. Food Chemistry 118 (2):391–7. doi:10.1016/j.foodchem.2009.05.001.
  • Sotiropoulou, N. S., M. Xagoraris, P. K. Revelou, E. Kaparakou, C. Kanakis, C. Pappas, and P. Tarantilis. 2021. The use of SPME-GC-MS IR and Raman techniques for botanical and geographical authentication and detection of adulteration of honey. Foods 10 (7):1671. doi:10.3390/foods10071671.
  • Sousa, J. M., E. L. de Souza, G. Marques, B. Meireles, Â. T. de Magalhães Cordeiro, B. Gullón, M. M. Pintado, and M. Magnani. 2016. Polyphenolic profile and antioxidant and antibacterial activities of monofloral honeys produced by meliponini in the Brazilian Semiarid region. Food Research International 84:61–8. doi:10.1016/j.foodres.2016.03.012.
  • Stagos, D., N. Soulitsiotis, C. Tsadila, S. Papaeconomou, C. Arvanitis, A. Ntontos, F. Karkanta, S. Adamou-Androulaki, K. Petrotos, D. A. Spandidos, et al. 2018. Antibacterial and antioxidant activity of different types of honey derived from mount Olympus in Greece. International Journal of Molecular Medicine 42 (2):726–34. doi:10.3892/ijmm.2018.3656.
  • Svečnjak, L., D. Bubalo, G. Baranović, and H. Novosel. 2015. Optimization of FTIR-ATR spectroscopy for botanical authentication of unifloral honey types and melissopalynological data prediction. European Food Research and Technology 240 (6):1101–15. doi:10.1007/s00217-015-2414-1.
  • Tsagkaris, A. S., G. A. Koulis, G. P. Danezis, I. Martakos, M. Dasenaki, C. A. Georgiou, and N. S. Thomaidis. 2021. Honey authenticity: analytical techniques, state of the art and challenges. RSC Advances 11 (19):11273–94. doi:10.1039/D1RA00069A.
  • Tsavea, E., F.-P. Vardaka, E. Savvidaki, A. Kellil, D. Kanelis, M. Bucekova, S. Grigorakis, J. Godocikova, P. Gotsiou, M. Dimou, et al. 2022. Physicochemical characterization and biological properties of pine honey produced across Greece. Foods 11 (7):943. doi:10.3390/foods11070943.
  • Wabaidur, S., M. S. Obbed, Z. Alothman, N. AlFaris, A. Badjah-Hadj-Ahmed, M. Siddiqui, J. ALTamimi, and T. Aldayel. 2020. Total phenolic acids and flavonoid contents determination in yemeni honey of various floral sources: folin-ciocalteu and spectrophotometric approach. 40(suppl.2). doi:10.1590/fst.33119.
  • Xagoraris, M., E. Lazarou, E. H. Kaparakou, E. Alissandrakis, P. A. Tarantilis, and C. S. Pappas. 2021. Botanical origin discrimination of Greek honeys: physicochemical parameters versus Raman spectroscopy. Journal of the Science of Food and Agriculture 101 (8):3319–27. doi:10.1002/jsfa.10961.
  • Xagoraris, M., P. K. Revelou, E. Alissandrakis, P. A. Tarantilis, and C. S. Pappas. 2021. Greek honey authentication: botanical approach. Encyclopedia 1 (4):1322–33. doi:10.3390/encyclopedia1040099.
  • Xagoraris, M., P. K. Revelou, S. Dedegkika, C. D. Kanakis, G. K. Papadopoulos, C. S. Pappas, and P. A. Tarantilis. 2021. SPME-GC-MS and FTIR-ATR spectroscopic study as a tool for unifloral common Greek honeys botanical origin identification. Applied Sciences 11 (7):3159. doi:10.3390/app11073159.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.