213
Views
0
CrossRef citations to date
0
Altmetric
Electrochemistry

Highly Sensitive Electrochemical Determination of Lead(II) by Double Stranded DNA (dsDNA) with a Carbon Paper/Reduced Graphene Oxide (CP/rGO) Substrate by Differential Pulse Anodic Stripping Voltammetry (DPASV)

, , , , , & show all
Pages 1048-1064 | Received 07 May 2022, Accepted 26 Aug 2022, Published online: 07 Sep 2022

References

  • Alkahtani, S. A., A. M. Mahmoud, M. H. Mahnashi, R. Ali, and M. M. El-Wekil. 2020. Facile fabrication of a novel 3D rose like lanthanum doped zirconia decorated reduced graphene oxide nanosheets: An efficient electro-catalyst for electrochemical reduction of futuristic anti-cancer drug salinomycin during pharmacokinetic study. Biosensors & Bioelectronics 150:111849. doi:10.1016/j.bios.2019.111849.
  • Bansod, B., T. Kumar, R. Thakur, S. Rana, and I. Singh. 2017. A review on various electrochemical techniques for heavy metal ions detection with different sensing platforms. Biosensors & Bioelectronics 94:443–55. doi:10.1016/j.bios.2017.03.031.
  • Bui, M. P. N., J. Brockgreitens, S. Ahmed, and A. Abbas. 2016. Dual detection of nitrate and mercury in water using disposable electrochemical sensors. Biosensors & Bioelectronics 85:280–6. doi:10.1016/j.bios.2016.05.017.
  • Ding, L. J., Z. Dai, L. T. Xiao, H. H. Hong, J. Wei, Y. Q. Li, N. Hao, and K. Wang. 2021. Mass-produced flexible Br doped PEDOT modified carbon paper electrodes for constructing mercury ion photoelectrochemical sensor. Sensors and Actuators B: Chemical 339:129871. doi:10.1016/j.snb.2021.129871.
  • Eigler, S., C. Dotzer, and A. Hirsch. 2012. Visualization of defect densities in reduced graphene oxide. Carbon 50 (10):3666–73. doi:10.1016/j.carbon.2012.03.039.
  • El-Wekil, M. M., A. M. Mahmoud, S. A. Alkahtani, A. A. Marzouk, and R. Ali. 2018. A facile synthesis of 3D NiFe2O4 nanospheres anchored on a novel ionic liquid modified reduced graphene oxide for electrochemical sensing of ledipasvir: Application to human pharmacokinetic study. Biosensors & Bioelectronics 109:164–70. doi:10.1016/j.bios.2018.03.015.
  • El-Wekil, M. M., M. Darweesh, M. S. A. Shaykoon, and R. Ali. 2020. Enzyme-free and label-free strategy for electrochemical oxaliplatin aptasensing by using rGO/MWCNTs loaded with AuPd nanoparticles as signal probes and electro-catalytic enhancers. Talanta 217:121084. doi:10.1016/j.talanta.2020.121084.
  • Jia, M., Y. Lu, R. Wang, N. Ren, J. Zhang, X. Changhua, and J. Wu. 2020. Extended GR-5 DNAzyme-based Autonomous isothermal Cascade machine: An efficient and sensitive one-tube colorimetric platform for Pb2+ detection. Sensors and Actuators B: Chemical 304:127366. doi:10.1016/j.snb.2019.127366.
  • Jovanovski, V., S. B. Hocevar, and B. Ogorevc. 2017. Bismuth electrodes in contemporary electroanalysis. Current Opinion in Electrochemistry 3 (1):114–22. doi:10.1016/j.coelec.2017.07.008.
  • Lai, C., Y. J. Zhang, X. G. Liu, S. Y. Liu, B. S. Li, M. M. Zhang, L. Qin, H. Yi, M. F. Li, L. Li, et al. 2019. Electrochemical biosensor for amplified detection of Pb2+ based on perfect match of reduced graphene oxide–gold nanoparticles and single-stranded DNAzyme. Analytical and Bioanalytical Chemistry 411 (28):7499–509. doi:10.1007/s00216-019-02146-w.
  • Li, F., Y. Feng, C. Zhao, and B. Tang. 2011. Crystal violet as a G-quadruplex-selective probe for sensitive amperometric sensing of lead. Chemical Communications (Cambridge, England) 47 (43):11909–11. doi:10.1039/C1CC15023E.
  • Li, P. J., Y. Gui, and D. J. Blackwood. 2018. Development of a Nanostructured alpha-MnO2/Carbon Paper Composite for Removal of Ni2+/Mn2+ ions by electrosorption. ACS Applied Materials & Interfaces 10 (23):19615–25. doi:10.1021/acsami.8b02471.
  • Liao, X. J., J. J. Luo, J. Wu, T. T. Fan, Y. Yao, F. L. Gao, and Y. Qian. 2018. A sensitive DNAzyme-based electrochemical sensor for Pb2+ detection with platinum nanoparticles decorated TiO2/alpha-Fe2O3 nanocomposite as signal labels. Journal of Electroanalytical Chemistry 829:129–37. doi:10.1016/j.jelechem.2018.10.009.
  • Liu, M. C., G. H. Zhao, Y. T. Tang, Z. M. Yu, Y. Z. Lei, M. F. Li, Y. A. Zhang, and D. M. Li. 2010. A simple, stable and picomole level lead sensor fabricated on DNA-based carbon hybridized TiO2 nanotube arrays. Environmental Science & Technology 44 (11):4241–6. doi:10.1021/es1003507.
  • Liu, Y. Y., R. H. Qiu, Z. C. Zhang, D. W. Chen, Y. S. Gao, Z. P. Liu, H. C. Li, and C. Y. Wang. 2022. Label-free electrochemical biosensor based on GR5 DNAzyme/Ti3C2Tx Mxenes for Pb2+ detection. Journal of Electroanalytical Chemistry 905:115979. doi:10.1016/j.jelechem.2021.115979.
  • Lu, H. X., G. Q. Wang, R. H. Dai, X. Ding, M. C. Liu, H. H. Sun, C. Q. Sun, and G. H. Zhao. 2019. Visible-light-driven photoelectrochemical aptasensor based on reduced graphene oxide/Ti–Fe–O nanotube arrays for highly sensitive and selective determination of microcystin-LR. Electrochimica Acta.324:134820. doi:10.1016/j.electacta.2019.134820.
  • Lyu, J., M. Mayyas, O. Salim, H. Zhu, D. Chu, and R. K. Joshi. 2019. Electrochemical performance of hydrothermally synthesized rGO based electrodes. Materials Today Energy 13:277–84. doi:10.1016/j.mtener.2019.06.006.
  • Ma, J. P., W. S. Bai, and J. B. Zheng. 2022. A novel self-cleaning electrochemical biosensor integrating copper porphyrin-derived metal-organic framework nanofilms, G-quadruplex, and DNA nanomotors for achieving cyclic detection of lead ions. Biosensors and Bioelectronics 197 (113801):113801. doi:10.1016/j.bios.2021.113801.
  • Ministry of Health of the People’s Republic of China and Standardization Administration of China. 2006. Standards for drinking water quality (GB 5749-2006). http://openstd.samr.gov.cn/bzgk/gb/newGbInfo?hcno=73D81F4F3615DDB2C5B1DD6BFC9DEC86. July 1, 2007
  • Oberhaus, F. V., D. Frense, and D. Beckmann. 2020. Immobilization techniques for aptamers on gold electrodes for the electrochemical detection of proteins: A review. Biosensors 10 (5):45. doi:10.3390/bios10050045.
  • Pathak, P., J.-H. Hwang, R. H. T. Li, K. L. Rodriguez, M. M. Rex, W. H. Lee, and H. J. Cho. 2021. Flexible copper-biopolymer nanocomposite sensors for trace level lead detection in water. Sensors and Actuators B: Chemical 344:130263. doi:10.1016/j.snb.2021.130263.
  • Peng, J. Y., Q. Huang, W. F. Zhuge, Y. X. Liu, C. Z. Zhang, W. Yang, and G. Xiang. 2018. Blue-light photoelectrochemical sensor based on nickel tetra-amined phthalocyanine-graphene oxide covalent compound for ultrasensitive detection of erythromycin. Biosensors & Bioelectronics 106:212–8. doi:10.1016/j.bios.2018.02.009.
  • Peng, J. Y., Q. Huang, Y. X. Liu, P. F. Liu, and C. Z. Zhang. 2019. Photoelectrochemical sensor based on composite of CdTe and nickel tetra-amined phthalocyanine covalently linked with graphene oxide for ultrasensitive detection of curcumin. Sensors and Actuators B: Chemical 294:157–65. doi:10.1016/j.snb.2019.05.047.
  • Qi, Y. L., X. L. Chen, S. S. Liu, P. Yang, S. Y. Zhang, C. J. Hou, and D. Q. Huo. 2021. Electrochemical sensor for Cd2+ detection based on carbon fiber paper sequentially modified with CoMOF, AuNPs, and glutathione. Journal of the Electrochemical Society 168 (6)0:067526. doi:10.1149/1945-7111/ac0c36.
  • Rees, N., and R. Fuller. 2020. The toxic truth: Children’s exposure to lead pollution undermines a generation of future potential. New York: The United Nations Children’s Fund and Pure Earth.
  • Saidur, M. R., A. R. A. Aziz, and W. J. Basirun. 2017. Recent advances in DNA-based electrochemical biosensors for heavy metal ion detection: A review. Biosensors & Bioelectronics 90:125–39. doi:10.1016/j.bios.2016.11.039.
  • Uzun, D., H. Arslan, A. B. Gündüzalp, and E. Hasdemir. 2014. Preparation of modified glassy carbon surface with N-(1-H-indole-3yl) methylene thiazole-2-amine and its characterization. Surface and Coatings Technology 239:108–15. doi:10.1016/j.surfcoat.2013.11.028.
  • Wang, J., P. Yu, K. Kan, H. Lv, Z. Liu, B. H. Sun, X. Bai, J. K. Chen, Y. Zhang, and K. Y. Shi. 2021. Efficient ultra-trace electrochemical detection of Cd2+, Pb2+ and Hg2+ based on hierarchical porous S-doped C3N4 tube bundles/graphene nanosheets composite. Chemical Engineering Journal and the Biochemical Engineering Journal 420 (130317):130317. doi:10.1016/j.cej.2021.130317.
  • Weng, C. Y., X. Y. Li, Q. Y. Lu, W. Yang, J. Wang, X. Q. Yan, B. Z. Li, M. Sakran, J. L. Hong, W. Y. Zhu, et al. 2020. A label-free electrochemical biosensor based on magnetic biocomposites with DNAzyme and hybridization chain reaction dual signal amplification for the determination of Pb2+. Microchimica Acta 187 (10):575. doi:10.1007/s00604-020-04548-5.
  • World Health Organization. 2011. Guidelines for drinking-water quality. 4th ed. https://www.who.int/publications/i/item/9789241548151, June 27
  • Wu, H. P. 1996. Dynamics and performance of fast linear scan anodic stripping voltammetry of Cd, Pb, and Cu using in situ-generated ultrathin mercury films. Analytical Chemistry 68 (9):1639–45. doi:10.1021/ac950879e.
  • Xia, Y. L., Y. T. Mo, W. Meng, X. S. Du, and C. G. Ma. 2019. Graphene/Carbon Paper Combined with Redox Active Electrolyte for Supercapacitors with High Performance. Polymers 11 (8):1355. doi:10.3390/polym11081355.
  • Xiang, X. M., F. P. Pan, Z. C. Du, X. H. Feng, C. J. Gao, and Y. Li. 2019. MgAl-layered double hydroxide flower arrays grown on carbon paper for efficient electrochemical sensing of nitrite. Journal of Electroanalytical Chemistry 855:113632. doi:10.1016/j.jelechem.2019.113632.
  • Xiao, Q., J. R. Feng, J. W. Li, M. M. Feng, and S. Huang. 2018. A label-free and ultrasensitive electrochemical aptasensor for lead(II) using a N,P dual-doped carbon dot-chitosan composite as a signal-enhancing platform and thionine as a signaling molecule. The Analyst 143 (19):4764–73. doi:10.1039/c8an00994e.
  • Xu, W., A. W. Zhao, F. T. Zuo, R. Khan, H. M. J. Hussain, and J. Li. 2020. A highly sensitive DNAzyme-based SERS biosensor for quantitative detection of lead ions in human serum. Analytical and Bioanalytical Chemistry 412 (19):4565–74. 2020 doi:10.1007/s00216-020-02709-2.
  • Yang, S. L., G. Li, J. Feng, P. Y. Wang, and L. B. Qu. 2022. Synthesis of core/satellite donut-shaped ZnO–Au nanoparticles incorporated with reduced graphene oxide for electrochemical sensing of rutin. Electrochimica Acta 412:140157. doi:10.1016/j.electacta.2022.140157.
  • Yi, J. M., T. J. Kim, S. J. Park, S. M. Hong, J. G. Kang, C. K. Rhee, J. Kim, and Y. Sohn. 2020. Photoelectrochemical and photocatalytic detoxification of Cr(VI) to Cr(III) over terpyridine-derivatized Au nanoparticles on carbon paper and indium-tin-oxide electrodes. Chemical Engineering Journal and the Biochemical Engineering Journal 402:126266. doi:10.1016/j.cej.2020.126266.
  • Zhang, W., S. Y. Zhu, R. Luque, S. Han, L. Z. Hu, and G. B. Xu. 2016. Recent development of carbon electrode materials and their bioanalytical and environmental applications. Chemical Society Reviews 45 (3):715–52. doi:10.1039/C5CS00297D.
  • Zhang, X., X. Y. Huang, Y. W. Xu, X. Wang, Z. M. Guo, X. W. Huang, Z. H. Li, J. Y. Shi, and X. B. Zou. 2020. Single-step electrochemical sensing of ppt-level lead in leaf vegetables based on peroxidase-mimicking metal-organic framework. Biosensors & Bioelectronics 168:112544. doi:10.1016/j.bios.2020.112544.
  • Zhou, J. R., B. E. Li, A. J. Qi, Y. J. Shi, J. Qi, H. Z. Xu, and L. X. Chen. 2020. ZnSe quantum dot based ion imprinting technology for fluorescence detecting cadmium and lead ions on a three-dimensional rotary paper-based microfluidic chip. Sensors and Actuators B: Chemical 305:127462. doi:10.1016/j.snb.2019.127462.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.