233
Views
0
CrossRef citations to date
0
Altmetric
Fluorescence

Rapid, Selective Fluorescent Determination of Copper (II) in Aqueous Solution and Living Cells Using a Dansyl-Based Click Probe

, , , , &
Pages 1174-1191 | Received 24 Jul 2022, Accepted 04 Sep 2022, Published online: 03 Oct 2022

References

  • Birinci, A., H. Eren, F. Coldur, E. Coskun, and M. Andac. 2016. Rapid determination of trace level copper in tea infusion samples by solid contact ion selective electrode. Journal of Food and Drug Analysis 24 (3):485–92. doi:10.1016/j.jfda.2016.02.012.
  • Bost, M., S. Houdart, M. Oberli, E. Kalonji, J. F. Huneau, and I. Margaritis. 2016. Dietary copper and human health: Current evidence and unresolved issues. Journal of Trace Elements in Medicine and Biology: Organ of the Society for Minerals and Trace Elements (GMS) 35:107–15. doi:10.1016/j.jtemb.2016.02.006.
  • Chen, H., Z. Zhou, Z. Li, X. He, and J. Shen. 2021. Highly sensitive fluorescent sensor based on coumarin organic dye for pyrophosphate ion turn-on biosensing in synovial fluid. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 257:119792. doi:10.1016/j.saa.2021.119792.
  • Chiodo, S., N. Russo, and E. Sicilia. 2006. LANL2DZ basis sets recontracted in the framework of density functional theory. The Journal of Chemical Physics 125 (10):104107. doi:10.1063/1.2345197.
  • Choi, M. G., S. Cha, H. Lee, H. L. Jeon, and S. K. Chang. 2009. Sulfide-selective chemosignaling by a Cu2+ complex of dipicolylamine appended fluorescein. Chemical Communications. 7390–2. doi:10.1039/b916476f.
  • Cotruvo, J. A. 2017. WHO Guidelines for drinking water quality: First addendum to the fourth edition. Journal AWWA 109 (7):44–51. doi:10.5942/jawwa.2017.109.0087.
  • Du, J., M. Hu, J. Fan, and X. Peng. 2012. Fluorescent chemodosimeters using “mild” chemical events for the detection of small anions and cations in biological and environmental media. Chemical Society Reviews 41 (12):4511–35. doi:10.1039/c2cs00004k.
  • Gao, T., X. Huang, S. Huang, J. Dong, K. Yuan, X. Feng, T. Liu, K. Yu, and W. Zeng. 2019. Sensitive water-soluble fluorescent probe based on umpolung and aggregation-induced emission strategies for selective detection of hg2+ in living cells and zebrafish. Journal of Agricultural and Food Chemistry 67 (8):2377–83. doi:10.1021/acs.jafc.8b06895.
  • Gomoiu, I., E. Chatzitheodoridis, S. Vadrucci, I. Walther, and R. Cojoc. 2016. Fungal spores viability on the international space station. Origins of Life and Evolution of the Biosphere: The Journal of the International Society for the Study of the Origin of Life 46 (4):403–18. doi:10.1007/s11084-016-9502-5.
  • Gonzáles, A. P., M. A. Firmino, C. S. Nomura, F. R. Rocha, P. V. Oliveira, and I. Gaubeur. 2009. Peat as a natural solid-phase for copper preconcentration and determination in a multicommuted flow system coupled to flame atomic absorption spectrometry. Analytica Chimica Acta 636 (2):198–204. doi:10.1016/j.aca.2009.01.047.
  • Gracioso, L. H., J. Peña-Bahamonde, B. Karolski, B. B. Borrego, E. A. Perpetuo, C. do Nascimento, H. Hashiguchi, M. A. Juliano, F. C. Robles Hernandez, and D. F. Rodrigues. 2021. Copper mining bacteria: Converting toxic copper ions into a stable single-atom copper. Science Advances 7 (17):eabd9210. doi:10.1126/sciadv.abd9210.
  • Gu, B., L. Huang, W. Su, X. Duan, H. Li, and S. Yao. 2017. A benzothiazole-based fluorescent probe for distinguishing and bioimaging of Hg2+ and Cu2. +Analytica Chimica Acta 954:97–104. doi:10.1016/j.aca.2016.11.044.
  • Hedison, T. M., M. Shanmugam, D. J. Heyes, R. Edge, and N. S. Scrutton. 2020. Active intermediates in copper nitrite reductase reactions probed by a cryotrapping-electron paramagnetic resonance approach. Angewandte Chemie (International ed. in English) 59 (33):13936–40. doi:10.1002/anie.202005052.
  • Hu, A., J. J. Guo, H. Pan, H. Tang, Z. Gao, and Z. Zuo. 2018. δ-Selective functionalization of alkanols enabled by visible-light-induced ligand-to-metal charge transfer. Journal of the American Chemical Society 140 (5):1612–6. doi:10.1021/jacs.7b13131.
  • Huang, J., M. Liu, X. Ma, Q. Dong, Q, and W. Zeng. 2014. A highly selective turn-off fluorescent probe for Cu(II) based on a dansyl derivative and its application in living cell imaging. RSC Advances 2014 (4):22964–70. doi:10.1039/c4ra02050b..[Mismatch
  • Huang, J., M. Tang, M. Liu, M. Zhou, Z. Liu, Y. Cao, M. Zhu, S. Liu, and W. Zeng. 2014. Development of a fast responsive and highly sensitive fluorescent probe for Cu2+ ion and imaging in living cells. Dyes and Pigments 107:1–8. doi:10.1016/j.dyepig.2014.02.022.
  • Jin, X., J. Gao, P. Xie, M. Yu, T. Wang, H. Zhou, A. Ma, Q. Wang, X. Leng, and X. Zhang. 2018. Dual-functional probe based on rhodamine for sequential Cu2+ and ATP detection in vivo. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 204:657–64. doi:10.1016/j.saa.2018.06.094.
  • Lakowicz, J. 2006. Principle of fluorescence spectroscopy. 3rd ed. New York, NY, USA: Springer.
  • Li, X., Y. Han, S. Sun, D. Shan, X. Ma, G. He, N. Mergu, J. S. Park, C. H. Kim, and Y. A. Son. 2020. A diaminomaleonitrile-appended BODIPY chemosensor for the selective detection of Cu2+ via oxidative cyclization and imaging in SiHa cells and zebrafish. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 233:118179. doi:10.1016/j.saa.2020.118179.
  • Li, Y., F. Gao, F. Gao, F. Shan, J. Bian, and C. Zhao. 2009. Study on the interaction between 3 flavonoid compounds and alpha-amylase by fluorescence spectroscopy and enzymatic kinetics. Journal of Food Science 74 (3):C199–C203. doi:10.1111/j.1750-3841.2009.01080.x.
  • Loland, J. O, and B. R. Singh. 2004. Copper contamination of soil and vegetation in coffee orchards after long-term use of Cu fungicides. Nutrient Cycling in Agroecosystems 69 (3):203–11. doi:10.1023/b:Fres.0000035175.74199.9a.
  • Mahajan, P. G., N. C. Dige, B. D. Vanjare, S. H. Eo, S. J. Kim, and K. H. Lee. 2019. A nano sensor for sensitive and selective detection of Cu2+ based on fluorescein: Cell imaging and drinking water analysis. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 216:105–16. doi:10.1016/j.saa.2019.03.021.
  • Ma, L., G. Liu, S. Pu, H. Ding, and G. Li. 2016. A highly selective fluorescent chemosensor for Cu2+ based on a new diarylethene with triazole-linked fluorescein. Tetrahedron 72 (7):985–91. doi:10.1016/j.tet.2015.12.068.
  • Meng, X., S. Li, W. Ma, J. Wang, Z. Hu, and D. Cao. 2018. Highly sensitive and selective chemosensor for Cu2+ and H2PO4- based on coumarin fluorophore. Dyes and Pigments 154:194–8. doi:10.1016/j.dyepig.2018.03.002.
  • Nieminen, E, and L. Murtomäki. 2021. Kinetics of Cu2+ reduction and nanoparticle nucleation at micro-scale 1,2-dichlorobenzene-water interface studied by cyclic voltammetry and square-wave voltammetry. Electroanalysis 33 (9):2087–95. doi:10.1002/elan.202100172.
  • Nodehi, M., M. Baghayeri, and H. Veisi. 2021. Preparation of GO/Fe3O4@PMDA/AuNPs nanocomposite for simultaneous determination of As3+ and Cu2+ by stripping voltammetry. Talanta 230:122288. doi:10.1016/j.talanta.2021.122288.
  • Papp, S., G. Jágerszki, and R. E. Gyurcsányi. 2018. Ion-selective electrodes based on hydrophilic ionophore-modified nanopores. Angewandte Chemie (International ed. in English) 57 (17):4752–5. doi:10.1002/anie.201800954.
  • Pwc, A., B. Hms, B. Kss, and W. Kong. 2021. Specific detection of Cu2+ by a pH-independent colorimetric rhodamine based chemosensor. Optical Materials 114:110990–8. doi:10.1016/j.optmat.2021.110990.
  • Reeve, J., P. J. Twomey, and I. Borovickova. 2021. Environmental causes of copper toxicity should not be forgotten in familial presentations. Journal of Clinical Pathology 74 (11):691. doi:10.1136/jclinpath-2020-207362.
  • Roy, D., A. Chakraborty, and R. Ghosh. 2018. Coumarin based colorimetric and fluorescence on-off chemosensor for F-, CN- and Cu2+ ions. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 191:69–78. doi:10.1016/j.saa.2017.09.071.
  • Shortreed, M., R. Kopelman, M. Kuhn, and B. Hoyland. 1996. Fluorescent fiber-optic calcium sensor for physiological measurements. Analytical Chemistry 68 (8):1414–8. doi:10.1021/ac950944k.
  • Shu, T., Z. Yang, Z. Cen, X. Deng, Y. Deng, C. Dong, and Y. Yu. 2018. A novel ratiometric fluorescent probe based on a BODIPY derivative for Cu2+ detection in aqueous solution. Analytical Methods 10 (48):5755–62. doi:10.1039/C8AY01760C.
  • Silva, E. L., P. d S. Roldan, and M. F. Giné. 2009. Simultaneous preconcentration of copper, zinc, cadmium, and nickel in water samples by cloud point extraction using 4-(2-pyridylazo)-resorcinol and their determination by inductively coupled plasma optic emission spectrometry. Journal of Hazardous Materials 171 (1-3):1133–8. doi:10.1016/j.jhazmat.2009.06.127.
  • Sun, R., L. Wang, C. Jiang, Z. Du, S. Chen, and W. Wu. 2020. A highly efficient BODIPY based turn-off fluorescent probe for detecting Cu2. +Journal of Fluorescence 30 (4):883–90. doi:10.1007/s10895-020-02544-9.
  • Sun, S., X. Wu, Y. Huang, Q. Jiang, S. Zhu, and S. Sun. 2021. Visual detection of Cu2+ in high-copper feed based on a fluorescent derivative of rhodamine B. Microchemical Journal 171:106858. doi:10.1016/j.microc.2021.106858.
  • Wagner, F. B., P. B. Nielsen, R. Boe-Hansen, and H. Albrechtsen. 2016. Copper deficiency can limit nitrification in biological rapid sand filters for drinking water production. Water Research 95:280–8. doi:10.1016/j.watres.2016.03.025.
  • Wang, Y., Y. F. Song, L. Zhang, G. G. Dai, R. F. Kang, W. N. Wu, Z. H. Xu, Y. C. Fan, and L. Y. Bian. 2019. A pyrazole-containing hydrazone for fluorescent imaging of Al3+ in lysosomes and its resultant Al3+ complex as a sensor for F. Talanta 203:178–85. doi:10.1016/j.talanta.2019.05.051.
  • Wu, L., J. Huang, K. Pu, and T. D. James. 2021. Dual-locked spectroscopic probes for sensing and therapy. Nature Reviews Chemistry 5 (6):406–21. doi:10.1038/s41570-021-00277-2.
  • Ye, S., N. Hananya, O. Green, H. Chen, A. Q. Zhao, J. Shen, D. Shabat, and D. Yang. 2020. A highly selective and sensitive chemiluminescent probe for real-time monitoring of hydrogen peroxide in cells and animals. Angewandte Chemie (International ed. in English) 59 (34):14326–30. doi:10.1002/anie.202005429.
  • Yu, T., P. Sun, Y. Hu, Y. Ji, H. Zhou, B. Zhang, Y. Tian, and J. Wu. 2016. A novel and simple fluorescence probe for detecting main group magnesium ion in HeLa cells and Arabidopsis. Biosensors & Bioelectronics 86:677–82. doi:10.1016/j.bios.2016.07.057.
  • Zhang, L., J. Lichtmannegger, K. H. Summer, S. Webb, I. J. Pickering, and G. N. George. 2009. Tracing copper-thiomolybdate complexes in a prospective treatment for Wilson’s disease. Biochemistry 48 (5):891–7. doi:10.1021/bi801926e.
  • Zhao, Y., X. B. Zhang, Z. X. Han, L. Qiao, C. Y. Li, L. X. Jian, G. L. Shen, and R. Q. Yu. 2009. Highly sensitive and selective colorimetric and off-on fluorescent chemosensor for Cu2+ in aqueous solution and living cells. Analytical Chemistry 81 (16):7022–30. doi:10.1021/ac901127n.
  • Zhou, M., X. Wang, K. Huang, Y. Huang, S. Hu, and W. Zeng. 2017. A fast, highly selective and sensitive dansyl-based fluorescent sensor for copper (II) ions and its imaging application in living cells. Tetrahedron Letters 58 (10):991–4. doi:10.1016/j.tetlet.2017.01.090.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.