90
Views
1
CrossRef citations to date
0
Altmetric
Atomic Spectroscopy

Novel Determination of Elemental Mercury in Silicate Rock by Thermal Desorption

ORCID Icon, &
Pages 1270-1278 | Received 07 Jun 2022, Accepted 14 Sep 2022, Published online: 23 Sep 2022

References

  • Beckers, F, and J. Rinklebe. 2017. Cycling of mercury in the environment: sources, fate, and human health implications: a review. Critical Reviews in Environmental Science and Technology 47 (9):693–794. doi:10.1080/10643389.2017.1326277.
  • Biester, H., M. Gosar, and G. Muller. 1999. Mercury speciation in tailings of the Idrija mercury mine. Journal of Geochemical Exploration 65 (3):195–204. doi:10.1016/S0375-6742(99)00027-8.
  • Biester, H., G. Muller, and H. F. Scholer. 2002. Binding and mobility of mercury in soils contaminated by emissions from chlor-alkali plants. The Science of the Total Environment 284 (1-3):191–203. doi:10.1016/S0048-9697(01)00885-3.
  • Bloom, N. S., E. Preus, J. Katon, and M. Hiltner. 2003. Selective extractions to assess the biogeochemically relevant fractionation of inorganic mercury in sediments and soils. Analytica Chimica Acta 479 (2):233–48. doi:10.1016/S0003-2670(02)01550-7.
  • Coufalík, P, and J. Komárek. 2014. The use of thermal desorption in the speciation analysis of mercury in soil, sediments and tailings. Journal of Analytical Chemistry 69 (12):1123–9. doi:10.1134/S1061934814120028.
  • Dini, A., M. Benvenuti, P. Costagliola, and P. Lattanzi. 2001. Mercury deposits in metamorphic settings: the example of Levigliani and Ripa mines, Apuan Alps (Tuscany, Italy). Ore Geology Reviews 18 (3-4):149–67. doi:10.1016/S0169-1368(01)00026-9.
  • Fang, S. C. 1981. Studies on the sorption of elemental mercury vapor by soils. Archives of Environmental Contamination and Toxicology 10 (2):193–201. doi:10.1007/BF01055621.
  • Gamboa-Herrera, J. A., C. A. Ríos-Reyes, and L. Y. Vargas-Fiallo. 2021. Mercury speciation in mine tailings amended with biochar: effects on mercury bioavailability, methylation potential and mobility. Science of the Total Environment 760:143959. doi:10.1016/j.scitotenv.2020.143959.
  • Lighty, J. S., G. D. Silcox, D. W. Pershing, V. A. Cundy, and D. G. Linz. 1990. Fundamentals for the thermal remediation of contaminated soils. Particle and bed desorption models. Environmental Science & Technology 24 (5):750–7. doi:10.1021/es00075a022.
  • Nóvoa-Muñoz, J. C., X. Pontevedra-Pombal, A. Martínez-Cortizas, and E. G. R. Gayoso. 2008. Mercury accumulation in upland acid forest ecosystems nearby a coal-fired power plant in Southwest Europe (Galicia, NW Spain). Science of the Total Environment. 394 (2-3):303–12. doi:10.1016/j.scitotenv.2008.01.044.
  • O'Connor, D., D. Hou, Y. S. Ok, J. Mulder, L. Duan, Q. Wu, S. Wang, F. M. G. Tack, and J. Rinklebe. 2019. Mercury speciation, transformation, and transportation in soils, atmospheric flux, and implications for risk management: A critical review. Environment International 126:747–61.
  • oh Park, M., M.-H. Kim, and Y. Hong. 2020. The kinetics of mercury vaporization in soil during low-temperature thermal treatment. Geoderma 363:114150. doi:10.1016/j.geoderma.2019.114150.
  • Padalkar, P. P., P. Chakraborty, K. Chennuri, S. Jayachandran, L. Sitlhou, M. Nanajkar, S. Tilvi, and K. Singh. 2019. Molecular characteristics of sedimentary organic matter in controlling mercury (Hg) and elemental mercury (Hg0) distribution in tropical estuarine sediments. The Science of the Total Environment 668:592–601. doi:10.1016/j.scitotenv.2019.02.353.
  • Reis, A. T., J. P. Coelho, I. Rucandio, C. M. Davidson, A. C. Duarte, and E. Pereira. 2015. Thermo-desorption: A valid tool for mercury speciation in soils and sediments? Geoderma 237-238:98–104. doi:10.1016/j.geoderma.2014.08.019.
  • Reis, A. T., C. M. Davidson, C. Vale, and E. Pereira. 2016. Overview of challenges of mercury fractionation and speciation in soils. TrAC Trends in Analytical Chemistry 82:109–17. doi:10.1016/j.trac.2016.05.008.
  • Rice, K. M., E. M. Walker, Jr, M. Wu, C. Gillette, and E. R. Blough. 2014. Environmental mercury and its toxic effects. Journal of Preventive Medicine and Public Health = Yebang Uihakhoe Chi 47 (2):74–83. doi:10.3961/jpmph.2014.47.2.74.
  • Rumayor, M., M. A. Lopez-Anton, M. Díaz-Somoano, M. M. Maroto-Valer, J.-H. Richard, H. Biester, and M. R. Martínez-Tarazona. 2016. A comparison of devices using thermal desorption for mercury speciation in solids. Talanta 150:272–7. doi:10.1016/j.talanta.2015.12.058.
  • Schroeder, W. H, and J. Munthe. 1998. Atmospheric mercury – an overview. Atmospheric Environment 32 (5):809–22. doi:10.1016/S1352-2310(97)00293-8.
  • Sladek, C, and M. S. Gustin. 2003. Evaluation of sequential and selective extraction methods for determination of mercury speciation and mobility in mine waste. Applied Geochemistry 18 (4):567–76. doi:10.1016/S0883-2927(02)00115-4.
  • United Nations Environmental Programme. 2018. Global Mercury Assessment 2018. https://www.unep.org/resources/publication/global-mercury-assessment-2018 (accessed on September 12, 2022).
  • United States Environmental Protection Agency. 2007. Method. 7473. Mercury in solids and solutions by thermal decomposition, amalgamation, and atomic absorption spectrophotometry.
  • Winter, T. G. 2003. The evaporation of a drop o mercury. American Journal of Physics 71 (8):783–6. doi:10.1119/1.1568971.
  • World Health Organization. 2016. International programme on chemical safety. Ten chemicals of major health concern. https://chemycal.com/news/a6321e58-dfbf-4e30-914d-62d270622b65/WHO (accessed on September 12, 2022).
  • Wolfram. 2021. Mathematica, version 13.0. Champaign, IL: Wolfram Research, Inc.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.